
C112 BOEIN AEROSPACE CO SEATTLE WA BOEING MILITARY AIRPL-ETC F/B 9/2

COMPUTER PROGRAM DEVELOPMENT SPECIFICATION FOR IDAMST OPERATION-ETC(U)
NOV 76 F33615-76-C-IO99

UNCLASSIFIED SPEC-SB-OI1 AFAL-TR-76-20B-ADD-1 ML;.llIIuIuuuIuu
-ElllElllllEE
-EIIIEEEEEIII

4-__ _7_ ,AFAL-TR-76-208,_Addendum #1

SPECI FICATION

SB 4041 rL ?,jE L
,4PUTER .IOGRA.IVELOPE4TEF! CATION
FOR T ,.QPEIONAL LI

A CIJTIVE SF R

Prepared by .

THE BOEING AEROSPACE COMPANY
BOEING MILITARY AIRPLANE DEVELOPMENT

. i TTLE. WASHaNGTON

2

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

, PREPARED FOR
SAIR FORCE AVIONICS LABORATORY D T IC

UNITED STATES AIR FORCE E E T
, WRIGHT-PATTERSON AFB, OHIO 45433
CL. APR 17 19130~

I* E

C.3.

8 4 I 5it

TABLE OF CONTENTS

PARAGRAPH PAGE
NUMBER TITLE NUMBER

1.0 SCOPE 1
1.1 IDENTIFICATION I
1.2 FUNCTIONAL SUMMARY I

2.0 APPLICABLE DOCUMENTS 2
2.1 GOVERNMENT DOCUMENTS 2
2.1.) APPENDICES TO CONTRACT F33615-76-C-1099 2

STATEMENT OF WORK (SOW)
2.1.2 DAIS DOCUMENTS (REFERENCE) 2
2.1.3 IDAMST DOCUMENTS (PROGRAM GENERATED) 2
2.1.4 IDAMST DOCUMENTS (REFERENCE) 3

* 2.2 NON-GOVERNMENT DOCUMENTS 3

3.0 REQUIREMENTS 4
3.1 PROGRAM DEFINITION 4
3.1.1 HARDWARE INTERFACES 4
3.i.% THE DAIS MULTIPLEX SYSTEM 4
3.7.1.1.1 BUS WORDS 4
3..1.2 DATA BUS PROTOCOLS 6
3.7. .".3 TYE BUS CONTROL INTERFACE UNIT 7
3 1 ... 4 THE REMOTE TERMINAL (RT) 19
3,..1.2 1DAMST PROCESSOR 25
3.1.1.2.1 VECTORED INTERRUPT SYSTEM 25
3.1.1.2.2 SPECIAL MEMORY LOCATIONS 29
3.1.1.2.3 ADDITIONAL STORAGE 29
3.1.1.2.4 INTERVAL TIMERS 29
3.1.1.2.5 STORAGE WRITE PROTECTION 30
3.1.1.2.6 ROM PROGRAMS 30
3.1.1.3 MASS MEMORY 32
3.1.1.3.1 MASS MEMORY COMMANDS 32
3.1.1.3.2 MASS MEMORY REMOTE TERMINAL INTERFACE 32
3.1.1.3.3 TAPE FORMAT 34
3.1.1.4 PROCESSOR CONTROL PANEL (PCP) 36
3.1.1.4.1 PHYSICAL FORMAT 36
3.1.1.4.2 RUN/HALT SWITCH 36
3.1.1.4.3 RESTART SWITCH 36
3.1.1.4.4 PROCESSOR STATUS LIGHTS 36
3.1.2 SOFTWARE INTERFACES 37
3.1.2.1 APPLICATION SOFTWARE 37
3.1.2.1.1 TASKS 37
3.1.2.1.2 COMSUBS 40
3.1.2.1.3 COMPOOL BLOCKS 40
3.1.2.1.4 EVENTS 43
3.1.2.1.5 TIME 43
3.1.2.1.6 REAL TIME PSEUDO-DECLARATIONS 44
3.1.2.1.7 REAL TIME PSEUDO-STATEMENTS 45
3.1.2.1.8 MASTER EXECUTIVE INTERFACES 47

LILA/f

v '1 ,. .. .

TABLE OF CONTENTS

PARAGRAPH
NUMBER TITLE NUMBER

3.1.2.2 JOVIAL J73/I COMPILER 48
3.1.2.2.1 J73/I HBC RUN TIME CONVENTIONS 48
3.1.2.2.2 J73/I DEC-10 RUN TIME CONVENTIONS 48
3.1.2.3 SDVS 50
3.1.2.3.1 SLS 51
3.1.2.3.2 FDBS 51
3.1.2.4 PALEFAC 51
3.1.2.4.1 LOCAL EXECUTIVE TABLES 51
3.1.3 DAIS EXECUTIVE FUNCTIONAL DESCRIPTION 67
3.1.3.1 LOCAL EXECUTIVE 73
3.7.3.7.1 HARDWARE INTERFACE CONTROL FUNCTION 74
3.1.3.1.2 APPLICATION INTERFACE FUNCTION 74
3.1.3.1.3 LOCAL EXECUTIVE PROPER 74
3.1.3.1.4 LOCAL EXECJTIVE INITIALIZATION AND RECOVERY FUNCTION 78
3.1.3.2 MAST R EXECUTIVE 78
3.1.3.2.1 MASTER INITIALIZATION FUNCTION 80
3.1.3.2.2 YASTER TIME CONTROL FUNCTION 80
3.1.3.2.3 MASTER SYNCHRONOUS CONTROL FUNCTION 80
. .. 2.4 MASER ASYNCHRONOUS CONTROL FUNCTION 80

3,3.2.5 MASTER ERROR RECOVERY FUNCTION 80
.3. 2.6 MASTER RECONFIGURATION FUNCTION 80

3.1.3.2.7 MASS MEMORY CONTROL FUNCTION 80
3.2 DETAILED FUNCTION REQUIREMENTS 83
3.2.1 LOCAL EXECUTTVE FUNCTIONS 83
3.2.1.1 HARDWARE INTERFACE CONTROL FUNCTION 83
3.2.1.1.1 INTERRUPT HANDLING FUNCTiON 83
3.2.1.1.2 ASYNCHRONOUS RECEPTION FUNCTION 85
3.2.1.1.3 MINOR CYCzE RECE0TION FJNCTION 86
3.2.1.1.4 ASYNC-iRCNOUS TRANSMISSION FUNCTION 89
3.2.1.2 APPLICATION :NLRFAC- FACTION 94
3.2.1.2.1 EXECUTIVE SERVICE RCJTiES 94
3.2.1.2.2 APPLICATION INTERFACE INTRINSIC FUNCTIONS 94
3.2.1.2.3 EXECUTIVE SERV:CE RETURN FUNCTION 97
3.2.1.3 LOCAL EXECJTIVE PROPER 99
3.2.1.3.1 LOCAL -X LTiVE CONTROL F JNCTION 99
3.2.1.3.2 MINOR C'{, SETUP FuNCTION 101
3.2.1.3.3 EVENT 'I NLIG F.N.CIT.IN0.... .N , uN 102
3.2.1.3.4 TASK .-WN& -U;CTION 104

3.2.1.3.5 TASK >.JL NG FJNJTION 107
3.2.1.3.6 TASK "kMINATION/CANCELLATION FUNCTION 107
3.2.1.3.7 WAIT F1ATON 109
3.2.1.3.8 COMPCC,_ BLOCK HANDLING FUNCTION 110
3.2.1.3.9 DISPAT2H FUNCTION 117
3.2.1.3.10 IO DEV-2S FJNCTION 118
3.2.1.4 iNITIAZATIO, AN, kECOVERY FUNCTION 118
3.2.1.4.1 INlTALIZAT-ON ANI, RE-INITIALIZATION FUNCTION 118
3.2.1.4.2 LOCAL E;XTIVE ERROR RECOVERY FUNCTION 120
3.2.1.4.3 POWEk 33,N FUNCTION 120

iii

S.

TABLE OF CONTENTS

PARAGRAPH PAGE
NUMBER TITLE NUMBER

3.2.2 MASTER EXECUTIVE FUNCTIONS 122
3.2.2.1 MASTER INITIALIZATION 122
3.2.2.2 MASTER TIME CONTROL FUNCTION 124
3.2.2.2.1 TIMER B CONTROL FUNCTION 124
3.2.2.2.2 TIMER A CONTROL FUNCTION 124
3.2.2.2.3 MASTER TRIGGER FUNCTION 125
3.2.2.3 MASTER SYNCHRONOUS CONTROL FUNCTION 126
3.2.2.4 COMMAND LIST HANDLER FUNCTION 127
3.2.2.5 BCIU INTERFACE FUNCTION 128
3.2.2.6 MASTER ASYNCHRONOUS CONTROL FUNCTION 129
3.3 ADAPTATION 131
3.3.1 GENERAL ENVIRONMENT 131
3.3.2 SYSTEM PARAMETERS 131
3.3.3 SYSTEM CAPACITIES 131

4.0 QUALITY ASSURANCE PROVISIONS 132
4.1 INTRODUCTION 132
4.2 COMPUTER PROGRAM VERIFICATION 133
4.2.1 PROGRAM ELEMENT TESTS 133
4.2.2 CPCI INTEGRATION TESTS 134
4.2.3 FORMAL SOFTWARE TESTING 134

Accession For

TAB
Unannounced
SJUSti 1cit ion

ce" " 's

iDist 4Cc, ii

iv

b ._ ,"r _I

LIST OF FIGURES

PARAGRAPH PAGE
NUMBER TITLE NUMBER

3.1.1.1.3.2.18-1 SOFTWARE INTERFACE WITH MODE COMMANDS 20
FOR BCIU AND REMOTE TERMINALS

3.1.1.1.4.2.3-1 COMPOSITION OF A BIT WORD 22

3.1.1.2-1 IDAMST PROCESSOR I/O ORGANIZATION 26

3.1.1.2.1-1 INTERRUPT STORAGE 27

3.1.1.2.5-1 MEMORY PROTECT BLOCK DIAGRAM 31

3.1.1.3.1-1 REMOTE TERMINAL/MTU INTERFACE 33

3.1.1.4.1-! PHYSICAL FORMAT OF THE PCP 36

3.1.2.1.1-1 TASK STATES AND CONTROL 38

3.1.2.1.3-1 RELATIONSHIP OF REMOTE TERMINALS AND TASKS 40
TO COMPOOLS

3.1.2.4.1.1-1 FORMAT OF A DMA POINTER BLOCK 52

3.1.3-1 SYNCHRONOUS PROCESSING IN REMOTE MODE 68

3.1.3-2 SYNCHRONOUS PROCESSING IN MASTER MODE 69

3.1.3-3 ASYNCHRONOUS PROCESSING IN REMOTE MODE 70

3.1.3-4 ASYNCHRONOUS PROCESSING IN MASTER MODE 71

3.1.3-5 MASTER-MONITOR-LOCAL EXECUTIVE PROCESSING 72

3.1.3.1.1-1 INTERACTIONS OF THE HARDWARE INTERFACE 76
CONTROL FUNCTION IN REMOTE MODE

3.1.3.1.1-2 INTERACTIONS OF THE .DRWARE INTERFACE CONTROL 77

FUNCTION IN MASTER MODE

3.1.3.1.3-1 INTERACTIONS OF THE LOCAL EXECUTIVE PROPER 79

3.1.3.2-1 INTERRELATION OF THE MASTER EXECUTIVE FUNCTIONS 81
IN NORMAL OPERATION

3.2.1.1.2.1-i EXAMPLE OF RECEPTION QUEUE 87

3.2.1.1.2.2-1 PROCESSING OF ASYNCHRONOUS RECEPTION FUNCTION 88

3.2.1.1.4.1-1 EXAMPLES OF T ANSMISSION QUEUE 91

v

LIST OF FIGURES

PARAGRAPH PAGE
NUMBER TITLE NUMBER

3.2.1.1.4.2-1 ASYNCHRONOUS TRANSMISSION 93

3.2.1.2.2.2-1 EXECUTIVE SERVICE RETURN PROCESSING 98

3.2.1.3.1.2-1 LOCAL EXECUTIVE CONTROL PROCESSING 100

3.2.1.3.2.2-1 MINOR CYCLE SYNCHRONIZATION 103

3.2.1.3.3.2-1 EVENT HANDLING PROCESSING 105

3.2.1.3.4.2-1 TASK CHECKING PROCESSING 106

* 3.2.1.3.5.2-1 TASK SCHEDULING PROCESSING 108

3.2.1.3.7.2-1 WAIT PROCESSING ill

3.2.1.3.8.2-1 COMPOOL BLOCK HANDLING 113

3.2.1.3.8.2-1 ASYNCHRONOUS COMPOOL BLOCK HANDLING 114

3.2.1.3.8.2-3 INTERNAL ASYNCHRONOUS COMPOOL BLOCK HANDLING 115

3.2.1.3.8.2-4 EXTERNAL ASYNCHRONOUS COMPOOL BLOCK HANDLING 116

vi

,p

LIST OF TABLES

PARAGRAPH PAGE
NUMBER TITLE NUMBER

3.1.I.3.2-1 BCIU REGISTERS 8

3.j.1.1.3.2.18-1 BCIU MODE OPERATIONS 18

3.1.1.2.1-1 INTERRUPT DEFINITION TABLE 28

3.1.1.2.5 MEMORY PROTECT BLOCK DIAGRAM 31

3.1.1.3.1 REMOTE TERMINAL/MTU INTERFACE 33

,.1.2.1.3-1 CATEGORIES OF COMPOOL BLOCKS 42

3.1.2.4.1.3-i TASK TABLE A 54

* 3. ;.2.4.1.3-2 TASK TABLE B 54

3.42.4.i.4-I EVENT TABLE ENTRY 57

3.2.1.1.1.2-1 FUNCTIONS INVOKED BY THE INTERRUPT 84
HANDLING FUNCTION

3.2,1.2.1.;-; INPUTS TO EXECUTIVE SERVICE ROUTINES 95

3.2.1.2.1.3- FUNCTiONS INVOKED BY EXECUTIVE SERVICE 96
ROUTINES

3.2.1.3.1.3-1 FUNCTIONS iNVOKED TO SERVICE ASYNCHRONOUS 112
RECEPTIONS

vii

.P •

1.0 SCOPE

IDENTIFICATION

This specification establishes the requirements for performance and design of
the Executive Software for the Integrated Diqital Avionics for a Medium Short
Takeoff and Landing Transport (IDAMST) system,

1.2 FUNCTIONAL SUMMARY

The IDAMST Executive provides the system software services which are utilized
by tne IDAMST Application Software. These services provide for the execution
of real time applications, sharing of common data, interprocessor communication,
ana communication with and between Remote Terminals required to coordinate
the operation of the core elements.,,.

I.

* 1

2.0 APPLICABLE DOCUMENTS

2.1 GOVERNMENT DOCUMENTS

2.1.1 Appendices to Contract F33615-76-C-l099.

a. Appendix A - "AMST Mission Profile and Scenario (Updated)".

b. Appendix C - "System Architecture".

c. Appendix E - "DAIS Mission Software, OFP Applications (SA-201-303)",
17 June 1976.

d. Appendix F - "DAIS Mission Software, Executive (SA-201-320)",
26 December 1975.

e. Appendix H - "Software Management Plan
q

f. Appendix M - "TRW System Backup and Recovery Strategy (TRW 6404-5-6-
06)", September 1975.

2.1.2 DAIS Documents (Reference)

a. ICD - Mission Operation Sequence: Pilot/Controls and Displays/Interface
with Application Software (SA-803-200), 15 March 1976. I

b. Mission Software/Controls and Displays Interface (SA-802-301),12 March 1976.

c. DAIS System Control Procedures, (SA-I00-101 Appendix A), 7 Nov. 1975.

2.1.3 IDAMST Documents (Program Generated)

a. Computer Proqram Development Specification, IDAMST OFP Applications
(SB 4040-42), July 1976.

b. Computer Program Development Specification, IDAMST OFP Error Handling
and Recovery (SB 4040-43), July 1976.

c. Computer Program Development Specifications, IDAMST Operational Test
Program (SB 4040-44), July 1976.

2.1.4 IDAMST Documents (Reference)

The following documents because of release dates serve only as reference documen-
tation for this specification; however, are considered prime to further definition
of the IDAMST system design.

a. System Specification for IDAMST, Type A (S1-1010), June 1976.

b. Prime Item Development Specification, IDAMST Processor, Type Bl
(Sl 4030), June 1976.

2

c. System Segment Specification, IDAMST Control/Display Subsystem, Type A
(Sl 5020), June 1976.

d. System Specification, IDAMST Information Transfer System, Type A
(SS 3020), May 1976.

e. Prime Item Development Specification, IDAMST Remote Terminal, Type B1
(SS 3130), May 1976.

f. Prime Item Development Specification, IDAMST Bus Control Interface,
Type 31 (SS 3230), May 1976.

2.2 NON-GOVERNMENT DOCUMENTS

a. Computer Sciences Corporation: Jovial J73/I Computer Programming Manual,
October 1975.

* z. Westinghouse Electrical Corporation: DAIS Processor Instruction Set,
*1 November ,973.

c. 3AIS Processor Prime Item Product Fabrication Specification (Preliminary)
F33615-75-C-ii54, December 1975.

d. DAIS Processor Engineering Data for Interface Control F33615-75-C-1154,
March 1973.

e. C.S. 3raer Laboratory: interface Control Document PALEFAC, Pre-Pro-
cessor/PALEFAC to Mission Software, January 1976.

3"

3.0 REQUIREMENTS

The purpose of the IDAMST Executive is to isolate the physical aspects of the
IDAMST federated system from the Application Software. The Executive allows the
Application Software to reference time, Remote Terminals and information in
other processors on a logical level. It masks the federated nature of the system,
so that Application Software can be written as if it were to execute in a single,
virtual machine. Finally, the IDAMST Executive controls the use of the Data
Bus and provides mechanisms for error recovery.

/ The IDAMST Executive Software consists of two parts: a Local Executive and a
Master Executive. Every processor in the IDAMST federated system contains a
Local Executive; on the other hand, only one Master Executive is in operation
at any given time. The Local Executive controls operations peculiar to a pro-
cessor, including control of the Application Software within the processor and
local participation in the I/0 processes through the Data Bus. The Master
Executive controls system-wide operations, including control of the Data Bus
and system-wide error recovery.

, 3.1 PROGRAM DEFINITION

3.1.1 Hardware Interfaces

The IDAMST Executive interfaces with four elements of hardware: the IDAMST
Multiplex System, the IDAMST Processor, the Mass Memory, and the Processor
Control Panel.

3.1.1.1 The IDAMST Multiplex System

The IDAMST Multiplex System (commonly called the "Bus") is a series of hardware
devices which permit communication between the various computers, displays and
aircraft controls of the IDAMST system.

The Bus is dual redundant and consists of two twisted pairs. Messages may be
sent across either bus; the second bus is used as a backup in case the system
is unable to receive/transmit across the first.

The Bus rate is one megabit (i.e., it can transmit one million bits per second).
The manner in which bits are encoded on the Bus is described in SA-301-200A
(DAIS Digital, Command/Response, Time Division Multiplexing Data Bus; Section
2.l.b).

3.1.1.1.1 Bus Words

The basic parcel of information on the Bus is the 20 bit word. The first three
bits are the SYNC bits. The SYNC bits serve two functions. SYNC bits inform the
hardware to start reading a word. SYNC bits describe the format of the word
which may be one of two types:

a. DATA Word
b. STATUS or COMMAND Word

The last bit is a parity bit. The rest of bits are information bits which

depend upon the type (STATUS, COMAND or DATA) of the word.

...4

3.", DATA Words

Data words consist of sixteen information oits and nave two potential uses:

a. They may be data which will be written into a processor's memory.

b. They may follow a MODE COMMAND and their use will depend upon the MODE
command. Only one or two data words will follow a MODE comand.

/ 3.1.1.1.1.2 STATUS Words

..... STAS wort is transmitted it. response to -ay command -eceived by a
ter-inal. Terminal in tois case refers to any device capable of receiving and/
or trans; r,., sscs oz.;r -one ,,ai7e V Processor.

The format of the STATUS 't ora is:

' QL:'eso T/E

. - ,v s c .;,.nq tne acdreos oF tne zerainna retLrning
-r tczoz.s wrrc.

b. , . Errojr -t e to ia'f tae Thst mssage sent was in error.

C. is .e a1'>; c the Iterral statu: of the
zentcind. The deanin7 f ,ete Its are terminal dec:,ent.

d. T/F - -. . ne Master Proca.nor should examine
the : , n '-eaz .rfor,at;oo avaiiazie from this tevfinal.

3.1.1.1.1.3 CMmAl,,D W r s

A COMMAND word tt ,a y Master Processor whenever a terminal
is to send a a 'OC--.. mrs-; perform Q special function or inform
the Master Processor of tne ter-mras status.

The format of LC, A.\X .or c s

AdrS So Ac.ss Word Count

where:

a. Aodre s v,-, j- c- , -c r.ar, g tne adcress of tne terminal to receive
Zris 7,esscgE.

7/R: rL E or ; 0 v z . ,-c this bit is set zne terminal
is t3 s . tnis cit .s not set, the terminal is to
receive :usL .

Sub ez.h" e '*Cssaqe to be
Er. .- Cra. I vaue of zero, ther this ;s d

soe . . -- CE: ,c;ar. L YOH£ como-ana teils
n . .: e .. cr, otrer trar seno or receive d
Ces S c,.t?

5

.. . . .f ilr i I I I I": -- :- : '-

d. Word count is a five bit field. For a command to send or receive
data this will be the number of words transmitted. A word count of
zero will be interpreted as a value of 32.

If the Command is a MODE COMMAND then this field contains the number
for the MODE command. A MODE command of zero is always a request for
Status. A MODE command may be followed by one or two data words which

/ provide additional information to the terminal.

3.1.1.1.2 Data Bus Protocols

3.1.1.1.2.1 Master Transmission to a Terminal

When the Master Processor wishes to send a message to a Terminal:

a. The Master sends the terminal a Receive Command. The Receive Command
contains the number of data words and the subaddress identifying the
message being sent.

b. The Master sends the data words.

c. The Terminal transmits its status by sending a STATUS word.

3.1.1.1.2.2 Master Reception from a Terminal

When the Master Processor wishes to receive a message from a terminal:

a. The Master Processor sends a Transmit Command to the Terminal. The
Transmit Command contains the number of data words and the subaddress
identifying the message to be sent.

b. The Terminal sends a Status Command.

c. The Terminal sends the required number of data words.

3.1.1.1.2.3 Terminal Transmitting to a Terminal

When the Master Processor determines that a message is to be sent from a Terminal
to a Terminal, the following actions are performed:

a. The Master Processor sends the Terminal which is to receive the
message a Receive Command (as in 3.1.1.1.2.1).

b. The Master Processor sends the Terminal which is to transmit the
message a Transmit Command (as in 3.1.1.1.2.2).

c. The Terminal which is to transmit a message sends its status (as in
3.1.1.1.2.2).

d. The Terminal which is to transmit a message sends the appropriate
number of data words (as in 3.1.1.1.2.2).

I.

e. The Terminal wnich is to receive reads the data words (as in
3.1.1.1.2.1).

f. The Terminal which is to receive sends its Status (as in 3.1.1.I.2.1).

g. Only the Master Processor receives the status words and checks the
correct functioning of the terminals.

3.1.1.1.2.4 Terminal Desiring to Transmit or Receive

If a terminal wishes to transmit or receive a message, it sets the appropriate
bit in its Status Word.

The next time the Status Word is transmitted, the Master Processor will note
that a message is to be sent. When the Master Processor is ready, it will read
eitner the Activity Register or the Status Word of the Terminal to determine
whicn message the terminal wishes to send, and to whom the message will be
sent.
3.1i.1.2.5 Time-Outs

1 nWen either Master Processor or a Terminal expect to receive data, there will
De a wait of 75 microseconds. If within that time the Bus Interface has not
seen cata words on the Bus, then the Processor or Terminal Bus Interface times-
out ano assumes that no data is going to be transmitted. At this time a
Terminal will respond with its STATUS word signalling a Message Error.

3.].l.;.3 The Bus Control Interface Unit

3.1.1.1.3.1 Definition

The Bus Control Tnterface Unit (BCIU) shall provide tne interface control and
data transfer function requirec to connect a Processor witn two multiplexed
data ouses. The 6CIj sral. te irected to operate in a mode ny its interfacing
processor. The following are the miodes in wnich the BCIU shall be capable of
operating.

a. Remote Mode, providing transfer of data in Doth d~rections between
the Prozessor and eitner of the t.qc Buses, providing status replies
on the pproprmiate bus in raspors2 to comands, and special internal
opera. ors nd interrupts to th_ associated processor upon receipt
of cert -,r special commands or, the data buses.

b. Master Vice, p'-ovircnu contro, of the cata Dus based upon instructions
fetchec fro.r, the memory of tne Processor through the DWrect Memory
Access 2M,) Cnantel by tne BCIU.

This Yeater Contro' mode shall result in:

1. T., CIUd issuing BLUS Commands to other oevices on the Data buses.

2. drc JainL in cata transfers on toe buses (when the instruction
4 , tes ,; .

7-

3. Checking status responses from devices on the data buses.

4. Checking formats of the data bus operation.

5. Reporting of error conditions to the processor.

At any time, there shall only be one BCIU in Master Mode.

3.1.1.1.3.2 BCIU Registers

The Re.$aters of the BCIU control its mode of operation, provide information
for tTe Master Processor and provide information to its local processor.

BCIU registers are accessed through the PIO instruction (to be defined in the
IDAMST Processor Instruction Manual) by an address as given in Table 3.1.1.1.3.2-1.
The meaning and format of each register is discussed in the Bis Control Interface
Unit B-1 Specification SA 301300B.

PIO
ADDRESS REGISTER

0 PROCESSOR CONTROL REGISTER (PCR)

1 } INTERNAL STATUS REGISTER (ISR)

2 . BASE ADDRESS REGISTER (BAR)
3 INSTRUCTION ADDRESS REGISTER IAR)

4 BUILT-IN-TEST REGISTER (BITR)

5 MODE DATA REGISTER (MORI

6 LAST COMMAND REGISTER (LCR)

7 STATUS CODE REGISTER (SCR)

8 MASTER FUNCTION REGISTER (MFR)

9 POINTER REGISTER (PR)

10 DATA ADDRESS REGISTER (DAR)

11 WORD COUNT REGISTER (WCR)

12 XMIT STATUS WORD REGISTER (XSWR)

13 RECV STATUS WORD REGISTER (RSWR)

14 INSTRUCTION WORD REGISTER 1 (IWRI).

15 INSTRUCTION WORD REGISTER 2 (IWR2)

Table 3.1.1.1.3.2-1 BCIU REGISTERS (PIO ACCESSIBLE)

3.1.1.1.3.2.1 Processor Control Register (PCR)

This register (format shown below) shall contain indicators which generally
control the BCIU actions and in certain instances reflect a particular BCIU
state.

At the time power is applied (including during a transient recovery), the BCIU
will clear the PCR (and also the ISR), perform a self test, and present a

/ power up interrupt (level 1) to the processor.

The format of the PCR is:

2 3 4 5 6 7 11 12 13 14 15 16

STERI GO FAL SPARE SRX STBYP BCIU ADDRESS SPARE READY 1SPARE "'SY RUNCONT.

* a. Mastrr - This bit shall oe set to logic 1 by the Processor, in con-
, u-nction with the GO bit, to direct the BCIU to operate in Master

Mode. Conversely, the bit shall be set to logic 0 to indicate Remote
Mode.

b. Go - This bit shall be set to logic I by the Processor to indicate
the BCIU is to enter an operational mode. The bit shall be set to logic
0 by the Processor :o indicate an operational mode is to be terminated.
The Dz shall be set to logic 0 by the BCIU (Master Mode only) after an
operational moie is terminated Dy either a HALT instruction or an
unrecoverable direct memory access error condition.

c. Fail - This 3it snall be set to o oqic 7 i, the 6CIJ detects an error
T Telf-tes- Guring .ne power-cn intialization. The READY shall also
be set to iogic -. 1fl Wt.- Moce, the ECIL shall set the FAIL bit
(level 6 :nterrupt) To indicate a Failure.

d. Spare - This :it shcll De a logic 0 ana available for future use.

e. System Resec Ac o>' - This bit shall De set to logic 1 by the
Processor to inoicate acknolIedgement of the power-on-reset interrupt.

f. Self Test .v-?&s, - Trns ZAL shall oe set to a logic I by the pro-
cessor to ; trat te 3CU is rot to pefform self-test.

g. BCIU Addre.> Tes, 3 D-ts snall b,. set oy the Processor, upon
initiallyc,- ~g the SC1 U to enter an operational mode, to indicate
the addrescs r, C-l i.

h. Spare - Tnis bit st alI be a logic 0 ano available for future use.

i. Ready - Tni -;z sni. bc set to logic I oy the BCIU after completing
its power-3n init alization.

j. Spare- This bit srail be a logic 0 and available for future use.

9

k. Busy/Cont - In Remote Mode, the bit is set to logic 1 by the BCIU
after any interrupt is presented to the Processor in order to indi-
cate 8CIU Busy State entered. The bit is set to 1 by the Remote
Processor to indicate BCIU is to enter Processor initiated Busy

/ State. It is set to logic 0 by BCIU after having been directed to
Exit Busy State by the Remote Processor or via the Busy Override
Mode Command from the Master Processor.

In Master Mode, the bit is set to logic 1 by the Master Processor to
indicate to the Master BCIU that an interrupt has been processed
and the BCIU is to continue normal operation. The BCIU shall set
this bit to logic 0 prior to entering the Master Mode Pseudo Wait
State.

1. Run - This bit shall be set to logic 1 after Processor directs BCIU
to enter an operational mode or upon exiting a Busy state. The bit
shall be set to logic 0 by the BCIU after an operational mode has
been terminated.

4 3.1.1.1.3.2.2 Internal Status Register (ISR) - This register shall contain
indicators which are set only by the BCIU. These indicators shall generally
reflect any condition detected by the BCIU during the last bus or internal
operation which warrants an interrupt to the associated Processor. The register
shall be cleared by BCIU prior to processing a new instruction/command.

The format of the ISR is:

1 16
HI PCIIIVI/SI MDP!AXRIAM MFIXSEXIRSEXIXSEIRSEI NDRIICDIDPE IVD.DMA IInterrupt 7 t Ievell

Level Level 1 Level 2 Level 3 Level 4 5

The meaning of each bit is:

Bit Symbol Meaning
1 H Halt
2 PCI Program Controlled Interrupt
3 IVI/SI Invalid Instruction (Master Mode)

System Interrupt
4 MDP Mode Data Present
5 AXR Async Msg Int O=RECV l=XMIT
6 AM Async Msg Int
7 MF Master Function (Remote only)
8 XSEX XMIT STATUS Exception
9 RSEX Recv Status Exception
10 XSE XMIT Status Error
11 RSE Recv Status Error

12 NDR No Data Received
13 ICD Incomplete Data
14 OPE Data Parity Error
15 IVD Invalid Data
16 DMA Direct Memory Access (Error)

The above bits will only be set for given interrupts.

I.0

The meaninc of each bit is:

a. SALT (_) - This Dit shall be set to logic 1, in Master Mode only, to
indicate tnat the BCIU nas processed a HALT instruction. The operation-
al mode (Master) shall be terminated.

7' D. Program Controlled Interrupt (PCI) - This bit shall be set to logic
1, in Master Mode only, after completion of 2 word instruction
operation in which PCI was requested (PCI=I).

c. rhvalia instructon (IV!) - In Master Mode only, this bit shall be
set to fogic if the Device Address within the Receive field of the
2-word instruction is equal to the Device Address within the Transmit
field.

a. Syszer. interrupt (Sl_- In Remote Mode only, this bit shall be set
* to ogic 1 upor, recieving the System Interrupt Mode Command.

, e. Mcce_ at2 Present (MDP) - This bit shall be set to logic 1, in
Master Mode only, azter successfully receiving the Data Word
associateo witn Mode Operations (Interrupt results from mode operations
3, 10, li and 13).

As,' ,cronous Messae Xmit/Recv (AXR) in Master or Remote Modes, this
7_1 Lie set in conjunction with Bit 6 (AM) to indicate whether

the B!, was tne Receiver (AXR=O) or the Transmitter (AXR=l) of an
asynchronous message (Sub-Address=31).

g. __,yrccro. > essace (A n- Master or Remote Modes, this bit shall
be set to ogic I after successful completion of an asynchronous bus
message operation (Sub-Address=31).

h. Master Fnction M,7; - Tnis bit shall be set to logic 1, in Remote
Mode c7y, after -eceivng tne Master Function Mode Command (usually
called tne Minor Cycle Event).

i. Tran.,.It ,t xceptci- (XSEX) This bit shall be set to logic 1,
in Master Mooc onjy, cafer receiving an excepted, valid status word
associzeo witn a Remote device in Transmit Mooe in which the Message
Error, Terminul Failure, or Status Code is non-zero. The status word
shal. -c L-aced intact within tie XMIT Status Word Register.

j. Receiv: St-.,,s Excep.ion I(, ̂) - This bit shall be set to logic 1,
in Mrs-.r Mcde ony, after receiving an expected, valid status word
assoc- .aec witr, a Remote device in Receive Mode in which the Message
Error, Ter;mra, Failure, or Status Code is non-zero. The status word
snall be placed intact within the Received Status Word Register.

k. Trarsru.: Status rror (XSE) - This bit shall be set to logic 1, in
Master ,Mc- orly, if an expected status word associated with a Remote .
Device in Receive mode, -is not received, is received invalidly, is
rece' ec va;idly with bad parity, or is received validly with good
parity witc, u. evice Address tnat does not matci the Receive Device
Address w-trir tr.e 2-wod instruction.

11

1. Receive Status Error (RSE)- This bit shall be set to logic 1, in
Master Mode only, if an expected status word associated with a Remote
Device in Receive mode, is not received, is received invalidly, is
received validly with bad parity, or is received validly with good
parity with a Device Address that does not match the Receive Device
Address within the 2-word instruction.

m. No Data Receive NDR) - This bit shall be set to logic 1, in Master
Mode only, after conanding a Remote device to transmit one or more
data words and the first such data word has not arrived within 60
microseconds after status word reception.

n. Incomplete Data (ICD) - This bit shall be set to logic 1, in Master
Mode only, after receiving at least one expected data word and with
further data words expected, the next data word is not received within
60 microseconds after reception of the last data word.

o. Invalid Data (IVD) - This bit shall be set to logic 1, in Master
Mode only, after an expected data word was received with Parity Error

* ,indicated. Data word reception continues.

p. Data Parity Error (DPE) - This bit shall be set to logic 1, in Master
Mode only, after an expected data word was received with Parity Error
indicated. Data word reception continues.

q. Direct Memory Access Error $DMA)- This bit shall be set to logic 1,
in Master or Remote Mode, after an unrecoverable DMA Error is detected
while attempting to fetch an instruction word, a pointer word, or a
data word from main memory or while attempting to store a tag word or
a data word into main memory.

3.1.1.1.3..2.3 Base Address Register (BAR)- This register shall be set only by
a Processor for the associated BCIU (Master/Remote) and shall contain the most
significant 10 bits of a pointer word address within main memory for a given
data transfer operation. The addressed pointer word shall contain the true data
block address.

3.1.1 .1.3.2.4 Instruction Address Register (IAR)- This register shall be set only
by a Processor whose associated BCIU is to operate in Master Mode. The register
shall contain the main memory address of the initial 2-word instruction is
executed, the BCIU shall modify the register in order to reflect the address
of the next instruction to be executed. The register shall be unused in Remote
Mode.

3.1.1.1.3.2.SLast Command Register (LCR) -This register shall be used only in
support of the Transmit Last Command Mode Command. In Remote mode, the BCIU
shall place commands which are received validly and directed to the particular
BCIU into this register. Exceptions shall be Transmit Status Word, Transmit
Bit Word, and the Transmit Last Command itself.

3.1.1.1.3.2.6 Built-In Test Word Register (BITR) - This register shall be used
to either maintain the Built-In Test Word (Remote Mode), or to temporarily hold
Terminal Failure or bus monitoring of own transmission information (Master Mode).
The format of a BCIU BIT word is shown in the figure below and described in the
following paragraphs. 12

L

--- TERMINAL FAILURE FIELD MESSAGE ERROR FIELD

1 2 3 4 5 6 10 11 12 13 14 15 16
r ll f FAILURE CODE 1 1I ,0

i°IL ° L - = - - 0 LA-- -A

Q_ - co I

a. ,ower-On-oese - This bit shall be set to logic 1 if the BCIU performs
aower-Owerlt g ion.

D. Power Suppy Failure -wThis bit shall not be implemented for the
BoTe (Set to Logic 0).

C. BIM 2' %t - This bit shall be set to logic 1 by the Remote Mode BCIU
after powering down Bus Interface Module (BIM) I as a result of
receiving a Remove Power BIM 1 Mode Commnand. The BIT shall indicate tha
power has been removed from BIM 1.

d. BIM 2 Cit - This bit shall be set to logic 1 by the Remote ode BCU
after Powr-,ng down BIM1 2 as a result of receiving a Remove Power
BIM 2 M~ode Cornand. The bit shall indicate that power has been re-
moved from BIM 2.

e. DMA Er-or - Tnis bit sh.1i be set to logic 1 by the Remote Mode BCIU
after an unreccverable drect memory access error is detected while
fetchir,C, data words fro-,i or storing data words (excluding tag words)
into mia-n memory.

f. ,'aibi- -c, --,rr - The Fai!u - Coac snall be set for the following
Remote 'Cj errors: 3iM Failure, 3CM (Bus Control Module) ROM Parity
error, 5CM Data Flow error. The BCIU in master mode shall indicate
the DKY: and 3CM Data Flow Codes.

g. No Dat v - This oit snall be set to logic 1 by the Remote
Mode BCIU after having been directed to receive one or more data words
and the first sucn data word has not arrived within 75 microseconds
after commard word reception.

h. Word Thon:_.ow - Tis bit shal, be set to logic 1 by the Remote Mooe
--,ter nav .ng heen directed to receive two or more data words, at

least cnt s~cn datd word has arriveo, but the next expectec data
word &oes noz arrive within 60 microseconds of last data word receptio

13

i. Word Count High - This bit shall be set to a logic 1 by the Remote
Mode BCIU after detecting another Data Word after the word count is
zero.

j. Data Parity Error - This bit shall be set to logic 1 by the Remote
WCIa an expected data word was received with Parity Error
indicated. Data word reception continues.

k. Invalid Data - This bit shall be set to logic I by the Remote Mode
RCIU after an expected data word was received with RECV WORD INVALID
indicated. Data word reception continues.

1. Invalid Command - This bit shall be set to logic 1 by the Remote
8CIU after receiving a mode command in which the mode code designates
an invalid operation for the BCIU.

3.1.1.1.3.2.7 Status Code Register (SCR) - This register shall be used in Remote
Mode only and shall be set and reset by the Remote Mode Processor. The actual

* status code shall be the nine (9) least significant bits of the register and
, shall be merged into any status word prior to status word bus transmittal by the

Remote BCIU.

3.1.1.1.3.2.8 Master Function Register (MFR) - This register shall be used only
in support of the Master Function Mode Command. In Master Mode and in accordance
with Master Function processing, the contents of the register shall be transmitted
to the Remote device as a data word immediately following the command word. It
shall be theMaster Processor's responsibility to set the register. In Remote
Mode, the Remote Mode BCIU shall place the received data word, in response to
the Master Function mode command, into the Master Function Register. It shall
be the Remote Processor's responsibility to then interpret the contents of the
register.

3.1.1.1.3.2.9 Instruction Word Register 1 (IWR]) - This register shall be used
in Master Mode only to hold the first half of the current 32-bit instruction.

3.1.1.1.2.3.10 Instruction Word Register 2 (IWR2) - This register shall be
used in Master Mode only to hold the second half of the current 32-bit instruction.

3.1.1.1.3.2.11 Xmit Status Word Register (XSWR) - This register shall be used in
Master Mode only to hold any status word received from a Remote Device in
Transmit Mode, in which the Message Error, Terminal Failure, or Status Code
fields were non-zero.

3.1.1.1.3.2.12 Received Status Word Register (RSWR) - This register shall be
used in Master Mode only to hold any status word recieved from a Remote device
in Receive Mode, in which the Message Error, Terminal Failure, or Status Code
fields were non-zero.

3.1.1.1.3.2.13 Mode Data Register (MDR) - In Master Mode, and only in accordance
with performing a certain class of mode commands, the contents of this register
shall be transmitted to the Remote device as a data word immediately following
the command word. The Master Processor shall be responsible for setting the
register.

In Remote Mode, the MDR shall be undeprned for the Mode Operations defined.

14

. man

3.1.1.1.3.2.14 Pointer Register (PR) - This register shall be set by a BCIU
operating in eitier Master or Remote mode and shall contain the initial data
area address for a given data bus operation involving main memory data transfers.
The register shall be used in Tag Word Operations.

3.1.1.1.3.2.15 Data Address Register (DAR) - This register shall be set by a
BCIU operating in--either Master or Remote mode and shall be used to indicate
the main memory address of the next data word to be fetched/stored in support
of a given bus operation. The register shall be derived from the Pointer
Register and in all cases (Receive or Transmit) that value shall be initially
incremented by I to get over the Tag Word. This value then becomes the address
to fetch/store the first data word. As each word is fetched/stored, the BCIU
shall increment the register value by 1 to affect sequential data word fetch/
stores.

3.1.1..3.2.16 Word Count Register (WCR) - This register shall be derived from
* the Bus ConTiand aid sut by the BCIU in either Master or Remote Mode. in Bus

Operations involvrg data woro transfers, it shall indicate the remaining number
of ata words to be transferred. The register shall be decremented by 1, by the
3CIU, as each data word transfer is performed.

3.71.i..3.2.17 ,he EdC Command List - The Master Processor is the processor
a-Ltacned to the BCIU which is operating in Master Mode. The Master Processor
's tne only processor which is capable of initiating message transmission. No
ocner processor,, BCiU or RT sends messages until it has been told to do so by tn
Maszer BCIU and Master Processor.

Each BCIU commend consists olf two words in the following format:

Bitsl 2 3 5 6 7 11 12 16

OPE RECEIVE , RECEIVE
CODE i RETRY SPARE DEVICE SUBADDRESS / MODE

ADDRESS
0I

TRANSMIT TRANSMIT
WORD COUNT/MODE CODE B DEVCE SUBADDRESS / MODE

! ACRESS __ _ _ _ _ _ __ _ _ _ _ _

Eacn of the fie,-s .r tne twO word irstru ooion nave the following uses:

a. OP CODE - Tnete two .its determirne the function of the command.

00 ale tne * s ,'wavs the last command in a list and
denotes tnaz no otner c aomdan is to be performed. When the

lCu execites zn i nstriction tne Halt bit is set in the
:nternal Status egister arc B dU level 1 interrupt will be
qenerated.

01r \o C!" Coco , two ises. re i'-st is to cancel
Yl. , bter Thx&;:c'sarc Ci lorger Y Isnes the Master

t 3 L.

' 5 1

. . .*. . I ili--. . ii -. I1 i 1 [I I] iIil
I l

I

The second is to create a processor interrupt before the next
BCIU instruction is generated. A typical use of the latter
case is sending Mode Commands. The Mode Data Register must be
set before the command is sent. Thus, the interrupt causes
a BCIU pause which permits the Master Processor to set the
MDR and then set the Continue Bit in the PCR to resume BCIU
processing.

For this OP code only the interrupt field is examined. All
other options are ignored.

11 = Bus Operation. For this operation the rest of the fields are
interpreted as reception or transmission across the Bus.

b. RETRY -If the transmission attempted by this instruction was not
successfully completed, and this field is not zero, then the
transmission will be retried up to three times.

* c. SPARE -This bit is not used.

d. I - If this bit is set, successful completion of this instruction
will cause an interrupt. The PCI bit in the ISR will be set.
The interrupt will be of level I. The discussion accompanying
the No Operation Code explains the use of this bit, although
the bit may be used in any of the four instructions.

e. RECEIVE DEVICE ADDRESS - This field contains the address of the
terminal to receive the message. This field is only used for
BCIU instruction OP code "Bus Operation". If the Receive
Device Address is not the address of the Master BCIU (as
contained in the BCIU address field of the PCR), then a
Receive Command will be formed by concatenating the Receive
Device Address Field, a bit denoting Receive, the Receive Sub-
address/Mode field, and the Word Count/Mode Code field. This
receive command will then be transmitted across the Bus.

If the Receive Device Address field is the address of this
BCIU and the Receive Subaddress/Mode field is not zero (i.e.,
this is not a Mode Command), then the Receive Subaddress field
will be used to load the Data Address Register (see Section
3.1.1.1.3.2.15) which will then determine where the received
message will be stored.

f. RECEIVE SUBADDRESS/MODE - This field describes the message to be
received. The use of this field is described in the Receive
Device Address field. If this address were zero it would
indicate that this is a Mode Command.

g. WORD COUNT/MODE CODE - For mode commands this field contalns the
number of the command. For Receive/Transmit commands this
field contains the number of data words to be transitted.
Mode commands are discussed in 2,1.1.1.3.2.18.

16

h. B - This field indicates which Bus will be used for data trans-
mission. If this bit is zero, Bus number one will be used.
If this bit is one, Bus number two will be used.

i, TRANSMIT DEVICE ADDRESS - This field is similar to the Receive Device
Address except that it is the address of the terminal which will
send the message.

If the address is not that of tne Master BCIU, then Transmit
Command will be formed by concentrating the Transmit Device
Address field, the Transmit bit, the Transmit Subaddress/Mode
field ano the Word Count/Mode Code field.

if the Transmit Device Address field is the address of this
* terminal then the Data Address Register will be formed (see

Section 3..l.l.3.2.15) and the data will be written into the
Bus from that address.

For Mode Cor:mands the Transmit Device Address field is the
address oT this terminal tnen the Data Address Register will be
formed (see Section 3.l.1.1.3.2.15) and the data will be written-
into the Bus from that address.

For Modt Commands the Transmit Device Address field is the
address of tne terminal to receive the Mode Command and the
Receive Device Address field is the address of the Master BCIU.

' is an error fcr the Receive Device Address field and the
Transmit Device Address field to be the same device. This
error wi 1 cause an interrupt of level 1 and the IVI bit will
be set in tne internal Status Register.

j. TRANSMI T SUSADDR£fSS/MCDE _ The use of this field has been discussed

in the descripton of the Transmit Device Address field.

For mode commanas, Doti the Transmit Subaddress and Receive
Sucaddress will 3e zero.

3.1.1.1.3.2.18 7ne r s- ne ovaiaole Mode Commands are described in the
table below. Mood Cczr,7ns oeyod these are to be used for system expansion and
are presently undefined. For these undefined Mode Comrnanas, the only response of
the terminal is to transmit its status word. The software interface is given in
Figure 3.1.1.1.3.2.18-1 for Dotn the 3CIU and remote terminals.

The BCIU determines whetrer a given Mode Command also requires data transmitted
to or received from a terminal. in the case that data should be transmitted the
Mode Data register w;i' De written. In the case that it should be read the data
received will be store3 in toe Mode Data register.

1.7

MODE
CODE
NUMBER BCIU (REMOTE MODE) BCIU (MASTER MODE)

0 Invalid Invalid
1 Transmit Status Word Transmit Status Word
2 Invalid Reset Status Code Field
3 Transmit BIT Word Transmit BIT Word
4 Remove Power Bus Interface I Remove Power Bus Interface 1
5 Remove Power Bus Interface 2 Remove Power Bus Interface 2
6 Shutdown Override Bus Interface 1 Shutdown Override Bus Interface 1
7 Shutdown Override Bus Interface 2 Shutdown Override Bus Interface 2
8 Invalid Initiate Terminal Self Test

9 Initialize Terminal Initialize Terminal
10 Transmit Last Command Transmit Last Command
11 Invalid Interrogate Activity Register
12 Invalid Reset Serial Input Channel
13 Invalid Interrogate Module Error Register
14 Invalid Initiate Serial Channel I/0
15 Invalid Word Masking

16 Invalid Bit Masking
17 No-op No-op
18 Master Function Interrupt Master Function Interrupt
19 Invalid Valid (Status)*
20 Busy Override Busy Override
21 System Interrupt System Interrupt
22 Invalid Valid (Status)*
23 Invalid Valid (Status)*
24 Invalid Valid (Status)*
25 Invalid Valid (Status)*
26 Invalid Valid (Status)*
27 Invalid Valid (Status)*
28 Invalid Valid (Status)*
29 Invalid Valid (Status)*
30 Invalid Valid (Status)*
31 Invalid Valid (Status)*

* Valid (Status) - 31CU in Master Mode shall expect only

a Status Word Response fo- all undefined Mode Operations.

Table 3.1.1.1.3.2.18-1 BCIU Mode Operations

Numbers 22 through 31 are Undefined commands.

Details of the uses of each of these mode codes are described fully in the BCIU

Specification.

Mode Codes 0, 1, 2, 3, 8, 9, 10 and 17 are primarily used to test the correct
operation of the Bus and BCIU.

Mode Codes 4 through 7 are used to correct faults in Bus operation by manipulating
the 3us interface.

. il l I I I -I I I I I -

Xoc~e Cc-de tnrourr 15 are sec: 7Cor krz. Cte ernnnal s and are not-, of importance
-c 3CIU operat'4n.

Moce Coces of importance to remote BCIU operation are:

I - Transmit Status Wora. The status word is transm-itted to the
Master Processor BCIU.

* 9 - TInitiaiize _ Terminal. This command initiates self test pro-
cedures so tnat at a lazer time the information may b)e trans-
mi'tted via a Transmit BIT WORD (Mode Command 3) commana.

* C - Trarsm' t LaSt roan r~rns tne contents of ztne Last
Zommr.c Re;-,stce. This :ommarc ,.s used -to dIetermine whetner a
commano- needs -to De r'ETrans:-,2:Lci.

*_ . Va-ct Fu c. .,rcr~ps trie Minor Cyc>,
5ynCnf' r I comzm1 nart. !7i qcr- fo-loa nq zrie co~mmand
and ir . -cr.E e-rc c-,s i:ed -ito t he
ia ste -' e; ni- ~er~ r e remote processor s

* - sy ve r c : rs cr-m.;& s e one 3 tsy con tr4) e Di4t i n th e
<emoce qrC ?roce&ssor CororI Re -s~er tc O~FF

.r~e Pr To cssor tec~rns to nrma' operation.

SYS. a; 1v, 7-r ;od oc oje caises thtSystem, :nt r:
Zfo e1,U - SsOJ5cf

3.1.1.1 .4 Th.e .3~z . r-,~

3.1 .1.1 .4.1 36s- ' haR TeI'K :rov~lies 'he inter
fate 5c ,ven the LJ. S7 Xu f Uyt: ;n c ~:c cSusses

Ine Ts provicie - , -e.~ O~. At processorss fas cescribed
in Section 31

rsubacadress j :c- In.^-S L \(_-ve Corran acts as a message
;c enti'-er. Tne S _.S n -. c correct interface with tne

~e-~ce lod~. . ~.c.;~QJ~ora~cp: roK' tne signals to tne a.. craft
subsystems.

Ihe RI performs i.. rrt, coc a2 nc settrs oo; error aind status b,!ts.

.4. 2 RT e h- srali coci ne registers, iog,.c, cecoaers,
3 ers, compard-3rs arc :n-o sLc-erCes requi red to perform the foc'.owing

a. Decc tt t o.-o z\cs 6 recozen oto tn,,sR

C. -.ec- 7- .>x...-o t COOa : rte 0:
0C- - ~ ~ tO OO

FUNCTION MODE COMMAND

- Initialization I ! Transmit Status

6,7 Shutdown Override, BIM
9 Initialize Terminal

! Sef Test (DITS) }
8 I n i t i a t e T e r mi n a l S e l f I

[Ts

Request Message Error 1 Transmit Status
Analysis and Retry 2 Reset StatusH 110 Transmit LastCommand

Failure Analysis 3 Transmit BIT
" 4,5 Remove Power BIM

* 8 Initiate Terminal Self Test

, _9 initialize Terminal ISWITCH\

Type) 1Asynchronous !I Interrogate Activity

Transmission Register
Setup___Register

lMinor Cycle 18 Master Function Interrupt

Synchronization 20 Busy Override
121 System Interrupt

Application Software 12 Reset Serial Input Channel
Requests 14 Initiate Serial Channel I/O

] 15 Word Maskj
,1 BTT Mask

Figure 3.1.1.1.3.2.18-1 Software Interface with Mode
Commands for BCIU and Remote Terminals

d. Transmit Data Words through the Bus to the data bus (one at a time)
if directed to do so by the received Command Word.

e. Transmit Status Words through the Bus to the data bus as directed

by the received Command Word.

f. Perform Mode Operations when and as directed by received Command
Words.

9. Distribute received Data Words to the prooer channels of the
proper IMs.

20

n. .1, : Daia Aoras from trie proper cnannels of the proper IMs for

transmission to tne data bus.

i. Maintain the Status Word and the Built-In-Test (BIT) Word of the RT
by performing continuous and periodic self test functions within
the RT.

3. Mairtair dn Activity Word and Error Word for monitoring status of
serial digitial IM's.

k. Maantain a iast Command kegister for verification of command receipt

in the event of an invalid response.

P rform 6it and Wora Masking.

"U, rutions trat the RT snall participate in shall be in the formats
* nef~ned in tre :,Miciplex Data B,s Specification, SA-30l-200A.

3.'>..l.4.2.l Receive Data

Tne Co:XlanO Word directs the RT to receive I to 32 data words with the number of
OatU words irvoved being specifiec by the Word Count/Mode Code field. Each word
of the receivec -essage shall be mapped to a subsystem output signal interface
,ine as specified Dy the Subaddress/Mode and the Word Count/Mode Code fields.

3.1.1.I.4.2.2 Transmit Data

A Transmit Command preoares tie RT to transfer from 1 to 32 Data Words, with the
number of Data Words defined by the Word Count/Mode Code field of the Command
Word. Each word of the message sna'l De sampled from the proper IM subsystem
signal interface line in a predeterr;ined order, using the Subaddress/Mode and
Word Count/Mode Code fields to define which predefined order.

3.1.1.1.4.2.3 RT-Data 3us Mode Operations

When the Subaddress/Moae field in tihe Command Word is zeros, the Word Count/
Mode Code field is interpreted as a Mode Code. The Mode Codes are listed in
Table 3.1.1.1.3.2-lS-I, and an explanation of each one follows. Those Mode Codes
that are not defined here may he used by the system designer. Any codes that
are not used are declared to be invalid codes. The i,:ode code of all zeros
wi'l not be used. 1f a terminal receives an invalid mode code, the terminal shall
set the Invalid Cumnionicn bit of the BIT word and, after the gap period, transmit
its Status Word win the Message Error Bit set. I

a. Transmit Status Word

Upon receipt of a command to transmit the Status Word, the terminal
shall pause for the gap period and then transmit the Status Word. The
format HF the status word is as specified in SA-301-200A. Bit ten
in the , t. code field shall indicate serial channel activity. Bit
eleven i' tris fie,d snall indicate serial channel parity error. The
rem ain, ,I sver. aits of the status code field are undefined at this

21

time. The reception of the Transmit Status Mode Command shall not
modify the contents of the Last Command Register, Status Word or
BIT Word Register.

b. Reset Status Code Field

When the terminal receives the command for this mode operation, the
terminal shall clear the nine bit status code field of the Status
Word. After the field has been cleared, the Status Word shall be
transmitted.

c. Transmit BIT Word

Upon receipt of a command to transmit BIT Word, the terminal shall
pause for the oap period and then transmit the status word and then
the BIT Word. A BIT Word shall be comprised of a sync waveform, a
condition field, and a parity bit as shown in Figure 3.1.1.1.4.2.3-1
below. The reception of the Transmit BIT mode command shall not modify
the contents of the Last Command Register.

BIT TIMES: CONDITION FIELD

1 2 5 63 9 10il 1 121 131 141 151.16117 1181 19120

BIT WORD: TERMINAL FAILURE MESSAGE ERROR
FIELD FIELD

I 1 SPARES

SYNC U

- LU V -

LU (AI-).
- c'.j -j CD a. -

cj 14 U L Le.j -

CD 0- 01 CA <A2 -C

Figure 3.1.1.1.4.2.3-1 Composition of a BIT Word

22

r.1
The sixteen bits following the sync (bits 4-19) shall be utilized
to indicate condition. If any particular bit is a logic "0" that
condition is not true.

1) Terminal Failure Field - The first six bits (bits 4-9) of the
Condition Field shall indicate failure conditions within the
terminal, and shall be set and cleared by the conditions or the
performance of self-test functions.

2) Message Error Field - The next four bits (bits 10-13) of the
Condition Field shall indicate error conditions in the last
data bus message that the Terminal participated in (excluding
!7oce operations requesting status or BIT Word). This field
is set to all logic "O's" when the Terminal begins operating
on a new oata bus message (again, excluding mode operations
requesting status or BIT Word).

d a. Remove Power - Bus interface #1

When the terminal receives this command it will no longer listen for
commands on the first wire of the Bus.

e. Remove Power - Bus Interface #2

Same as above, except that it applies to the second wire. Note that
this means that not only does the terminal not listen for commands on
tnat wire, but it does not send data or status words across that wire.
Removing power from both Bus Interfaces removes the RT from the IDAMST
system.

f. Shutdown Override - Bus Interface #1

When this command is received, the RT will again be able to receive
and trans.,it across tne First wire of the Bus.

g. Shutdown Overrioe - Bus Interface #2

When this command is received, the RT will again be able to receive
and transmit across the second wire of the Bus.

h. initiate Terminal Self Test

When this coiiiard is received, trie terminal executes its self test
logic and reports any failures in the BIT Word.

i. Initialize Termina,

Upon receipt of this command, the terminal shall assume its initiali-

zation state, and after the gap period, transmit its Status Word.

j. Transmit Last Coimmand

When te termna' receives this command, tne termina" shall pause for
the gap per-id anc then ;ransmit the Status Word followed by the con-

23

tents of the Last Command Register. The following mode operations will
not be recorded in the register: Transmit Status Word, Transmit BIT
Word, and Transmit Last Command.

k. Interrogate Activity Register

When the terminal receives this command, the terminal shall disable
the activity bit in the status code field, transmit the Status Word,
and then transmit the contents of the Activity Register. A one in
the Activity Register shall indicate that a serial channel requests
service.

1. Reset Serial Input Channel

The command word is followed by a data word that has the module and
channel address. When the terminal receives this command, the terminal
shall reset the serial channel Lockout Line, transmit the Status Word,
and then reset the activity bit disable.

m. Interrogate Interface Module Error Register

When the terminal receives this command, the terminal shall disable
the IM Error bit in the status code field, transmit the Status Word,
and then transmit the contents of the IM Error Register. A one in
the IM Error Register shall indicate a parity error on a serial
channel.

n. Initiate Serial Channel Input/Output

The command word is followed by a data word that contains the Module
and Channel address. When the terminal receives this command, the
terminal shall reset the serial channel ERROR line, transmit the
Status Word, reset the IM Error bit disable, and then input or output
data to or from the subsystem.

o. Word Mask

Upon issuing this command, the BCIU shall follow with the transmission
of two mask words from the Mode Data Register and then monitor the
data bus for a status word response. A bit in the mask word set to
logic 0 will mask the corresponding data word in the following Receive
Message. The Word Mask Operation shall remain in effect for the next
valid Receive Command received by the Remote Terminal. The word mask
shall not be destroyed by Transmit or Mode command operations to the
RT except the Initialize Terminal Mode Command shall cause the word
mask to be cleared.

p. Bit Mask

Upon issuing this command, the BCIU shall then monitor the data bus
for a status word response. The following receive message will consist
of alternating Bit Mask and Data Words. A bit in the Bit Mask Word

24

*0B

set to logic 0 will indicate masK operation on the corresponding bit
in the following data word. The maximum number of data words trans-
ferred shall be 16. The word count field of the Receive Command Word
shall be the total of Bit Mask and Data Words. The Bit Mask Mode
Command shall remain in effect until a Remote Terminal Receive Opera-
tion or an Initialize Terminal is received by the Remote Terminal.

q. No-op

Remote Mode - Upon receipt of this command the Remote Terminal shall
store the command in the Last Command Register and respond with a
status word.

Master Mode - Same as 3.2.1.1.1.3.10.

3.1.1.3 IDAMST Processor

The pertinert interfaces with the IDAMST Processor are described in Sections
3,..2.1 through 3.1.1.2.5. The input/output organization is shown in Figure
3.1.1.2-1.

3.1.1.2.1 Vectored Interrupt System (See Figure 3.1.1.2.1-1 and Table 3.1.1.2.1-1

Sixteen levels of interrupt are provided for in hardware. The interrupt system
snail have the capaoility of handling elght external and eight internal interrupt
which alternate in priority rating with toe highest being an internal interrupL,
These sixteen individual interrupt lines shall feed sixteen flip flops which
store the request. The four pits representing the interrupt number are used as -

our Dits of an address. The format of the address is (00000CO001 XXXXO).
This address is used to fetch the address of a table where the condition status
and instruction counter (1C) are to be stored. Upon interrupt, the present
condition and instrjction counter are stored at the fetched address. Further
interrupts are disaoled until the enable, LNBL, instruction is executed.

The new IC valLe is loadez from the location after the fetched address. The
program may load anc store :re registers using LM and STM instructions. Return
from an interrupt service routine is accomplished by the exchange status, EXS,
instruction.

All interrupts, except oowtr down, can be disabled by the disable, DSBL, instru-
ction. Interrupts can De selectvely masked by us:,g the set interrupt control,
SIC, instructizo. 7he entire interrupt :ystem iil be automatically cleared
upon power up.

An interrupt recuest may occur at any time but the interrupt processing must
wait until an instruction is finished.

NOTE: The instructions move, MOV, move indirect, MOVI,
anc register shift instructions SLR, SAR, SCR,
0SLR, DSAR, and DSCR can take many milliseconds.
it is the programmer's responsibility to keep the
cojnt used by these instructions small enough to
allot,, interrupts within a desired time.

25

PROCESSOR AND MEMORY

- '0' -J (Ai

CD=
C)' I.- V)

co (ZA-1m
I- -I C)C) cci

C~) I-z

IMUXI3OUS 16

PIO INTERRUPT DMA

CONTROL 13 __-__

I-
J2 13

00 1 . . .2 I D S PC LJ l Lii

- > C. .) exJ

J2 J3

BC IU BC IU

Figure 3.1.1.2-1 IDAMST Processor 1/O Organization

26

INTERRUPT I ADDRESS________

INTERRUPT 2 ADS -5 TABLE OF ADDRESSES

NEW IC

OLD CS__

OLD ic

OLD CSF
_____________2 WORD AREA IN MEMORY

OLD IC I FOR STORING CONDITION
STTU AND INSTRUCTION

The format in storage for the condition status upon interrupt, OLD CS,is:

L ZERO' DETECT BIT

SIGN BIT

OVERFLOW BIT

Figure 3.1...2.1-1. interrupt Storage

27

-p.

INTERRUPT TABLE NEW

NUMBER DESCRIPTION EXTERNAL POINTER IC

1 BCIU Interrupt #8 EXT 20 21

2 Spare INT 22 23

3 BCIU Interrupt #7 EXT 24 25

4 Illegal Operation Code INT 26 27

5 BCIU Interrupt #6 EXT 28 29

6 Boundary Alignment Error INT 2A 28

7 BCIU Interrupt *5 EXT 2C 2D

8 Interval Timer i2 INT 2E 2F

9 BCIU Interrupt 44 EXT 30 31

10 Interval Timer 61 INT 32 33

11 BCIU Interrupt #3 EXT 34 35

12 Processor Parity Error INT 36 37

13 BCIU Interrupt #2 EXT 38 39

14 Processor Memory Protect INT 3A 3B

15 BCIU Interrupt #1 EXT 3C 3D

16 Power Down INT 3E 3F

NOTE: Interrupt 16 is highest priority and interrupt 1 is
lowest priority. Interrupt 16 cannot be masked by
the set interrupt control, SIC, instruction. The
format of the table pointer address oenerated by the
interrupt hardware is shown below.

0 0 0 0 0 0 0 0 1 X X X X

INTERRUPT - 1

NOTE: Interrupt 16, power down (a) cannot be masked, (b) is
not disabled by the disable interrupt instruction, and

(c) is not disabled upon occurrence of another interrupt.
A minimum of 50 microseconds is available for processor
operation from the time power loss is sensed. If
primary power comes up immediately, there will be a 7.2
msec delay before Power up.

Table 3.1.1.2.1-1. Interrupt Definition Table.

28

0

3.1.1.2.2 Special Memory Locations

Location (Hexadecimal) Use

0 The first instruction executed upon power coming up
starts at location zero.

20 through 3F These are the locations for table pointers and new IC
values for the vectorea interrupts.

Instructions Located where the programmer or project desires.
Typically, this area is store protected.

Constants Locateu where the programmer or project desires.
Typically, this area is store protected.

* Scratch Storage Located where the programmer or project desires.
Not store protected.

A'- of core memory is preserved upon power down.

3..1.2.3 Aacitional Storage

7racre -s accizonal storage that is not a part of main memory. This storage ha
speciai uses arc 's not addressec as main memory. This storage it interateo

t fi floos, registers, a,-Id random access storage. Upon power down an
then power up, the contents of trn.s storage may be unknown. The additional stora
that software can influence are ;;sted below:

16 registers o' 16 cits eacn (AO tnrougn A15)
4 bits o'f ccciior st.-s fset to 'zero" status upon power up)
64 bits of processor stcra e protect RAM
64 bits o- JA storage 'rotect RAM
16 bits of rp .sks
16 interr,, reqes - -
2 intern 1, t- ers c .ts
16-bit h/ c ;g re -ser
'6-bit instr-ction =ouzter c ; power up,

3.1.1.2.4 Discre:L icjts and 3utpts aic interval Timers

Six 3iscrete ,-L-,ts , ce "rovicec to tre BCIU. Software shall output six
pits to a nowr ", e wncn feeor tne , fferentia a-- ' ers. The use of the,
outputs are 7:c. -",-rJt -screze ts snall e accepted from the BCIU. So!Ptwa;
£2d input a'! e-,t D,ts ST, sy from a synchronizing register fo-Ilowi
the receiver cwc. i:terva. tmers are provided within the processor.
Tc tir';ers ar3- ! / L.t courters. A is added to the least significan
-t a timer A veen' 7A >crse,:rds Cn to -i:cer F every 100 microseconds.

Jotn t.iers car. c oacc 3Y ctpu: isructions). As a .mnrimum, timer 5
can be read by -, 2nstruction. An -interrupt request is generated when the

2

timer increments from FFFF to 0000, if the proper mask register bit has been
enabled. If the timers are not loaded, an interrupt request is generated after
65,536 counts.

3.1.1.2.5 Storage Write Protection

Upon power up, all memory is write protected. Typically, a program begins with
instructions to load the storage protect RAM and then enables storage protect
based on the RAM content. The first 64 bits of the RAM provide processor write
protection. The next 64 bits provide DMA write protection. RAM addresses are
used in input and output instructions to read and write the RAM. A 1 in the
RAM provides write protection while a 0 in the RAM allows writing into memory.
Each bit in the RAM applies to a 1024 word block of main memory. RAM address 0
applies to locations 0 through 1023. RA'I address 1 apolies to locations 1024
through 2047, ... , RAM address 63 applies to locations 64,512 through 65,535 for
processor write protection. RAM address 64 applies to locations 0 through 1023,
RAM address 65 applies to locations 1024 through 2047, RAM address 127
applies to locations 64,512 throuah 65,535 for DAM write protection. Figure
3.1.1.2.5-7 shows a RAM which allows for expansion of access protection, which

* could encompass read or execute protection as well as write protection.

3.1.1.2.6 ROM Programs

The IDAMST processor will include programs in Read Only Memory (ROM), to load
software upon system initialization and to perform self-test. The interface is
(TBS).

C>

F- C-

CL Li IQ

I LUi

C: '.LJU

CD --- CD

LU.

CD -0 -0 -0

010~F 0- - O

C-1

LIJ 0

* CL

-o C-

3.1.1.3 Mass Memory

This section describes the functioning of the mass memory from which the IDAMST
system may:

a. Read the programs from which to IPL (Initial Program Load) the system.
b. Read different program configurations to reconfigure the software

during flight.
c. Write Digital Integrated Test System (DITS) results during the mission.

3.1.1.3.1 Mass Memory Commands

The tape drive shall receive the following commands through the control line as
depicted in Figure 3.1.1.3.1-1.

3.1.1.3.1.1 Read Record - shall command the taoe drive to read a variable
length record (up to a limit such as 512 words), The record will be stored in a
random access memory (RAM) (e.g. 512 words). Then the drive will halt.

3.1.1.3.1.2 Write Record - shall command the tape drive to write a fixed length
record which is the size of the RAM. The record will be ascertained from the RAM.

* The drive will halt at the completion of the record.

3.1.1.3.1.3 Search Record - shall command the tape drive to search until the
given record number ha-s -een established. The record number will be the initial
word in the record. Once the record has been found, it shall be read into the
buffer area.

3.1.1.3.1.4 Space Ahead/Back - shall command the tape drive to move to the
beginning of other records relative to the present record.

3.1.1.3.1.5 Rewind - shall command the tape drive to rewind the tape to the
beginning of tape marker.

3.1.1.3.1.6 Erase - shall command the tape drive to generate an interrecord
gap and to write a predefined bit pattern (e.g. all l's) at the normal data
transfer rate.

3.1.1.3.1.7 Stop End Record - shall command the tape drive to stop at the end

of the current record,

3.1.1.3.1.8 Halt - shall command the tape drive to halt operation.

3.1.1.3.2 Mass Memory - Remote Terminal Interface

The mass memory unit shall be attached to a Remote Terminal and be operated via
the commands defined above, An intermediate multiple message buffer memory will
be required. The buffer will allow several 32-word messages to be read into or
written out of the buffer at the mass memory rate and to be accumulated or
dispersed at the bus rate.

A buffer of 512 words would provide for an efficient packing of messages on a
magnetic tape by having 16-32 word messages packed in a sinale record.

32

p -.

dcl

-I) 5u

I-33

The remote terminal to buffer interface is also depicted in Figure 3.1.1.3.1-1.
Two subaddresses provide the mechanism by which the 512 word buffer may be
sequentially accessed in 32 word segments. One subaddress will be used for
control and status information while the other subaddress is for data to and from
the data buffer.

The status shall indicate whether the tape drive is at the beginning of the taoe,
end of the tape or at the black mark, is ready, busy, idle or runnina, the
number of error retries that have occurred during that block transfer, and the
command to which the drive is responding.

3.1.1.3.3 Tape Format

3.1.1.3.3.1 Tape Record T e Definition - An absolute binary tape consists of
one or more records consisting of a 'record separator' character followed by a
record number, followed by a single letter indicat~nc the type of record which
follows. Ifhere applicable, the data fo~lows the record type identifier character.
The types of records which may be contained on an absolute binary tape are as
follows:

Record Type

Indicator Record Ty p Function

B Binary Data Actual binary data record

D Header Identification

E Execution Address Loaded into Processor Instruction
Counter

G End of Tape indicates physical end of tape.

H End Load indicates end of data loading which
may contain many files.

The following is a detailed description of each of the record types and how they
are used. "R" is used to denote the "record separator" character.

S
3.1.1.3.3.2 Binary Data Record

S INUMBEP B ,ADDRESSj WORD COUNT BINARY DATA BINARY DATA I CHECKSUM

LOAD ADDRESS 4 character code of the starting memory address where the
data is to be sequentially loaded. For loads into non-
contiguous memory locations, multiple Binary Data Records
must be used. The most significant digit appears first.

WORD COUNT 4 character code indicating the number of data words con-
tained in the record. The most significant digit appears
first.

DATA 4 character code for each 16 bit word of the processor. The
most significant digit appears first.

34

~sE~~u~i 4 cnar&,:-tr cod, wrncn represents the imodulo 2 suim
(exc'.s-,ve OR) of the binary data contained in the LOAD
ADDRESS, W4ORD COUNT, and BINARY DATA FIELDS.

31.1.3.3.3 Header -Optional Record

ECORD,-
S UMaER_ I L HE'LADE-R TEXT

~KDRTEXT Cr~iracter sz- incj which allows identification and other
desired information to be associated with a tape or portion
of it. The Header Text is terminated by the next 'record
separator' character.

~~ LXeCutiofl Accress-Optioral Record

3 EXECUTION ADDRESS

9.2~ci T" --cracter cco-e speclfyingq trhe starting address to oe
lJR5Soucec into -,,le processor instruction counter. The most
si gnif i cant digit appears first.

1% UM5 G UNU OPTI1CAL LEADER

:fl~catOs pny-icca. end of tape. :-n-s is requiredi becaise
trle clear le-er a-L re beginning and end of a tape does not
caise any signa-, Lo De generated from the tape cassette unit
Receipi: of riis record before an End Load record signifies
t hat a- incovioiete ;,,ltip"e cape load condition exists, and
an appro-ir .a-e message will be written on a display. Normal
unoer ;rnase ,-crrstences, the iser would insert the next
tadpe zo be read ano initiate a new tape reac command, but t',
is not manoat-ory. The !DAMST system wil'i require a single
tape to loao.

J~..3.3.6 r

R RECORD

ruc~5tre end o the set of records contained on a "ape
'Dr tapes.

35

3.1.1.4 Processor Control Panel (PCP)

3.1.1.4.1 Physical Format

The physical format of the PCP is shown in Figure 3.1.1.4.1-1 below. Air-
craft avionics power is supplied to the PCP when aircraft primary power or
ground power is present.

PROCESSOR CONTROL PANEL

POWER I
RUN I I
FAIL

R UNT RESTART

Figure 3.1.1.4.1-1 Physical Format of the PCP

3.1.1.4.2 RUN/HALT Switch

The RUN/HALT switch is a three pole single throw guarded toggle switch.
When the RUN/HALT switch is moved to the RUN Position and normal aircraft
power available, each processor will be activated by a discrete signal. The
RUN discrete is reset by processor action. When the switch is moved to the
HALT position, each processor suspends operation.

3.1.1.4.3 RESTART Swtich

RESTART is a momentary operation pushbutton. Operation of the switch causes the
'RESTART' discrete signal to be sent to all mission processors in parallel.
'RESTART' discrete is reset by release of the RESTART button to normal position.

3.1.1.4.4 Processor Status Lights

One processor status light is provided for each IDAMST mission processor.
These lights are capable of indicatino three processor states via three
distinct colors.

The processor status lamps assume nominal state one automatically when aircraft
avionics power is presented to the PCP and the output of the mission processor,
or associated memory or associated BCIU power supply voltage is not within
tolerance (e.g. state one may indicate that a mission processor circuit breaker
has disconnected Dower from the processor).

States two and three are set in the PCP by discrete signals from the mission
processor. Absence of state two and three shall cause the processor status

3G

lamp to revert to state one. State two indicates normal operation of the
mission processor, memory and at least one channel of the redundant BCIU.
State three indicates BIT failures of the mission processor, memory or all
redundant channels of the BCIU.

3.1.2 Software Interfaces

The IDAMST Executive must interface with four other systems of software:

a. The Application Software
b. The Jovial J73/I Compiler
c. The Software Development and Verification System (SDVS)
d. PALEFAC

The Application Software, together with the RT's, constitute the totality of
the entities upon whicn tre Executive operates. In addition, most Executive
actions are initiated by Real Time Pseudo-Statements within the Application
Software.

The J73/1 Compiler produces tr.e object code for the Application Software and
most of tne object code of the Executive itself. The Executive must be
cognizant of and compatible with the calling sequences used by the Compiler.

in tre initial stages of software development, the Executive will run under
tre SDVS. Tne Executive must be compatible with the SDVS facilities, including

the Statement Level Simulator and Functional Data Bus Simulator.

S..2.7 Apiication Software

The IDAMST App i-catLion Software consists of Tasks, Comsubs, Compool Blocks,
and Events.

Tasks and Comsues are orocessing modules, containinq executable code and local
cata. Compooi 3[.ocks are data modules useo for communication between Tasks.
Events are boolean values used for control interactions between Tasks.

Tasks interact wir. -.re Execuivev through Real Time Pseudo-Declarations,
and Real Time Pscudo-Statements.

3.1.2.1.j Tasks

Tasks are the r:oc;oa coiponenzs of c.' DAMST Appl-cation Software. Every
Task is a J73/. 'ocee 're, ceciared witn no "data a'locator", with no
parameters or .. ctior ,esut.'

At any time, a -y s .n re 5AYS system has a "state". The possible states
of a task are nrowr. igure 3 . -1. Note that not al, states are
r1,utually excl>'-.., , d o tIK w.vicn is "executinq" is also dispatchable, r
active and invoed.

1eao iately A",o' r: '/'..... :'izat on, ore Tusk, the Master Scheduler,
i4 InvoKed b. c-. Lx.: ve, ro, a other asKs are in Uninvoked state. There.

See Joviaii,'" C:I)ter P'ro . a i'r7.-, varua, . 6-2 through 6-8.

37

LLa

LUj

Q- C:

ul -J

CJ,

C) 4-Y

LL.-

LLLa

L- L

cc CC

= I C4
0L LA1L

C4

cc,

LU

0L Laig

ti~

U.,J

<. Ne
* (CD

380

rI

after, Tasks can oe put into invoked state (Scneduled) or put into Uninvoked
state (Cancelled) only by Real-Time Pse. oo-Statements executed within other
tasks.

immediately after being Scheduled, a TasK is Inactive; however, it has the
potential to become Active, depending upon its Event Condition Set. The
Event Condition Set is a collection of Conditions, each of which may be
either "on" or "off". Each Condition has a "desired" value. When all the
conditions in the Event Condition Set have their desired values, if the Task
is Inactive, the Executive will put it into Active state. A Task may have a
null Event Condition Set, in which case it can only be Inactive momentarily.

Facr Condition in an Event Condition Set is associated with a set of Events.
When any of these Events is set on, the Condition is set on; when any of
these Events is set off, the Condition is set off. One Event may be associated
witn more tnan one Condition in an Event Condition Set. In addition, one Condi-
tion may be associated with a "Minor Cycle Event." These are Executive-
gere'atec ivents whicr are set "on" at certain specified times (see 3.1.2.15)
ana are otrrwise inaccessible to the Application Software. If a Condition
is associateo with a Minor Cycle Event, it may not be associated with any other
7ven,.

A Conditic may -e eitner Latcnec or Unlatched. A Condition associated witn
> inor C):l.e Event must be Unlatched. The sole difference between a Latched

ana an lnratcrec Condition is that upon the Scheduling or Activation of a
Tsk, the Unlatched Conditions are set to the undesirec value. Thus, a Task

can only ne Activatea by an unlatched Condition when the value of that condition
is -hanqjec to tne desirea value subsequent to the last Scneduling or Activation
of the Task. Ey contrast, Latched Conditions are changed only when one of
their associated Events is changec. Therefore, a Task with only Latched
Conditions in its Condition Set will be immediately Activated after it is
Scheduled if ali tne Conditions were satisfieo before the Schedule Statement.

A Task may retur, from Active to Inactive state from two causes: either because
it completes execution, or oecause it i:. forcibly Terminated by another Task.
In either case, immeditely after it returns to inactive state, the Event
Condition Set is evaiuated, and if all the Conditions have their desired
values, the Task is immeoiately re-Activated.
When a Task is Activated, it is immediately put into Dispatcnable state.

If, at any po-nh, curinc its execution, a Task executes a Wait Statement, the
Executive wil paceit into Wait state until the specified condition is
satisfied, upon wh'cn the Task will, again oecome Dispatchable.

All Dispatcha:'e Tasks should th eoretically be executed it.amediately. . owever,
since there may)e ;,,ore than one Dispatchable Task at any time with,.n any one
of the Processors, Tasks are ordered Dy Priority to resolve oossibie conflict..
Whenever the Executive in any Processor is not called upon for immediate action
it selects the nignest Priority Dispatchabie Task, and causes the Processor
to execute it.

Sa Task is Act~ve n nas :ot yet been exec,'ted, it 's said to oe Ready. f
it hes neen , t oe process of execution, but has been interrpted Dy a ninher
oriority Task, .t ,s said to be Suspenoed. f it is executing, it is said to
oe Executing.

39

Any given Task may only be Scheduled by one Task, which is called its
Controller. Two Tasks with a common Controller are said to be "siblings."
The Task Scheduled by any Task are said to be its "sons". If a Task has
no sons, it is said to have no "descendents"; otherwise, its descendents
are its sons and all the descendents of its sons.

Only a Task's Controller may Cancel or Terminate it; however, when a Task
is Cancelled or Terminated, all of its descendents are Cancelled or
Terminated. If a Task attempts to Cancel or Terminate itself, it will
Cancel or Terminate all of its descendents, but will leave its own state
unchanged.

There are two types of tasks, Privileged and Nominal. Privileged mode
shall be designated by a Privileged Mode bit in the Task Table B entry
for the task. The Normal tasks hav- the Privileged Mode bit set to 0.
When the Local Executive determines that a Privileged Mode Task is ready
for activation, it will directly call the task. When a Privileged Mode
Task executes, it will be in the privileged mode, and if it makes an

* Executive Service Request or is interrupted, the Local Executive shall
return control directly to the Task. PALEFAC shall set the Privileged
Mode bit in the Task Table B entry for the task and will place all of
the Task Table entries for the Privileged Mode Tasks in a processor at

ithe end of the Task Table for that processor, so that when the Dispatcher
must search the Task Table the Privileged Mode Task Table entries will
be examined first.

3.1.2.1.2 Comsubs

In addition to Tasks, the IDAMST Application Software may include another
kind of processing module, known as the "Comsub". A Comsub is a Jovial
J73/I based procedure declared external to any Tasks. A Comsub may be
called from many Tasks; there is a copy of each Comsub in any processor
containinq a Task from which the Comsub may be called.

A Comsub communicates with a Task which calls it only through its para-
meters and/or function result. No Comsub may execute any Real-Time Pseudo-
Statements; however, one Comsub may call another.

When a Task calls a Comsub, the Task is considered to be executing within
the code of the Comsub. Thus, it is possible for one Task to be suspended
within the code of a Comsub at the same time that another Task is
executing within the same Comsub. In other words, a Comsub must be re-entrant.
To implement this, every Task has a Comsub Local Storage Area assigned by
PALEFAC for storage of local data by the Comsubs which it calls. At any
time, there is a Comsub Stack Pointer which points to the area available for
storage to the next called Comsub. This Comsub Stack Pointer is considered
to be part of the process state of the Task, and is saved upon the occurrence
of an Interrupt.

3.1.2.1.3 Compool Blocks.

All communication of data between Tasks or between Tasks and the external
environment (RT's) is done by means of "Compool Blocks". No Task may

40

directly access a Compool Block unless a GLOBAL Copy is declared. Normally,
a Task references a "Local Copy" which has size and attributes -,entical
to tne Compool Block. A Task may copy the Compool Block into its Local Copy
by a READ Statement, or copy the Local Copy into the Compool Block by a
WRITE or TRIGGER statement. From the point of view of the Application
Software, READs, WRITEs, and TRIGGERs occur instantaneously, so a Compool
Block can never be read when it has been partially updated by a WRITE. If
a GLOBAL Copy has been declared, then the task in which the compool is
declared GLOBAL Copy is allowed to access the GLOBAL Data Block directly,
rather than using Executive Read and Write Requests into and out of local
copies of GLOBAL Data blocks. The Executive Read and Write Requests will
not actually move the data if the requesting task has declared the GLOBAL
data block as a GLOBAL COPY rather than as a LOCAL COPY. The GLOBAL COPY
provides for the same central control of table formats as the LOCAL COPY does.

Compooi Blocks are divided into three classes: Input, Output, and Inter-
task. input Compool Blocks can only be accessed by Tasks in a READ statement.
Tneir values are determined by RT's. Output Compool Blocks can only oe
accesseo by Tasks in a WRITE or TRIGGER statement; their values are "received"
only by RT's. intertask Compool Blocks are used solely for communication
betweer TasKs.

Suince a Cora+ooi Elock may be accessed in more than one processor and also,
possibly, in an RT, Comoool Blocks may exist in multiple copies. Any processor
4n wrich a Compool 3ock is read has a Physical Copy of the Block; any RT
wvr4-cn refererccc the Block, or any processor which only WRITEs or TRIGGERs
.he Compool 2locK, is consicered to have a Virtual Copy of the Block. To
maintain consistency between the various copies of a Compool Block, the
:xecuzive must send Compool Update Messages across the Data Bus. Compool
Blocks are furzrer classifiec according to when these Update Messages are
sent as: Synchronous, Asynchronous, and Critically Timed.

Synchronous Compcol Blocks are updated from a single authoritative Copy,
whether in a processor or an RT. at a specified rate and phase (see 3.1.2.1.5).
All copies of an Asynchronous Compool Block are updated wnen any of those
copies is changeo, eitner by the hardware of an RT or by a WRITE statement
within a processor. Critically Timed Compool Blocks are a special category
used only for Output. They may o:ly be TRIGGERed within a Task. A TRIGGER
statement includes a "time .o go". The Master Executive sends the Update
to the appropriate RT at tne specified time.

The various cuecor-ies o- Lo; pool BlocKs are shown in Table 3.1.2.1.3-1,
along with the eys wnicn tney may be referenced in a Task.

The first wore oJ eac- Dnysica Copy o a Cormoool Block is a "Minor Cycle
Time Tag" whic, indicates tne last time the Pnysical Copy was 4 pdated.
See Figure 3.'.2.1.-i for the relationships of remote Terminals and Tasks
to Compools.

I

411

C3 .14

(A4- .) S

Lu S-

00

0 0 X: 0 * U

~ ~ UU, U,)

o Lj~ L .x-~"i

~ ~ U, ~42

RT - * INPUT COMPOOL - ~ TASK

(WRITE TRIGGER)

R T *- OUTPUT COMPOOL qe TASK

(READ)

TAS K)TNTERTASK COMPOOL >~ TAS K

1re ~ .3.-1 Re-,a-.1orsr~p of Remro-e Termina~s and
Tasks to Compools

3.1.2.1.4 E-vents

:~~~'Crt~---, ;rcr:;cm r'a:On De :weer Tasks . An Event has two
Poss;:ie v.a,:,es: orn anc o-17. 4 TaSK --ay read the vale of an, Event, may
, AT- on an le. s-ee 3. i.?.1.,) and an C'vent may appear in th~e Event.
Lonco't.-on Set of d ask.

r erc2 ac~ x> <2 c.-ssts c 1-venz:,: Appiication Events arc System
-oo .,:a- -,r Everts Ire set on and off explicitly ty Tasks. System

aven e i. e-o off -,y tne Z'xe.-,tive upon certain occurre:nces. The

System Events eoexrzrer C'ass il-'ec is:

a. IasK

.Mno rc -y7

Any Task may r,-v c., -j Act.va:;on Event. S. -n an Event is
set, on wner, tr, .no ,e+. of" vrer, tole taSK reunst
:ractive or r:v ,.v. .nEvent associated with a Task
must have the .-

,A:.y asyncrrn-. L~ rno cc ve nt.
SUicn cin Lvenn. o.a-3:c, e- ther m'y a Task
or an R-. Th,- d -- i Co-poc ' OcK mrA st n ave tnle
same same as

vlnrov- Cycle L ~Ae, t~ ye Vacco -rding to spec'Ified
rates ant pia- , a ... y on',y be referenced in Event
Condition Sets.j

T daC: W Oe ,N C W way: S t "-,ay
reference ajsr ze ,i- a y sp cicj that certain occurrences should

43

happen cyclically. Absolute time is measured in seconds from the initiali-
zation of the system. Cyclic time is maintained in terms of Minor Cycles
and Yajor Frames.

A Minor Cycle is the shortest period of time at which a cyclic occurrence
may be specified. A Major Frame is the loncest period of t4'e at which a
cyclic occurrence may be specified. There are a -ixed number of Minor
Cycles to a Major Frame 'currently 6V, and each Major Frame has a fixed
duration (currently one second). Every Vinor Cycle is numbered in order
of its occurrence within a Major rra-e, start with zero.

Cyclic occurrences are specified by period and Dhase. Meriod is the number
of Minor Cycles between successive oc-urrences: phasp is the Minor Cycle
number of the first occurrencp withir any Major 7ra-e. Cearly, 4 pDhase
period < 64.

In practice, Minor Cycles will not always occur exact'y wherthey theoretically
should, partly because the Data Bus may be overloaded 4 any given Minor Cycle.
However, the Executive guarantees that these errors are not cumulative;
it will always generate the next Minor Cycle as close as possible to the
theoretical time, regardless of when the previous Minor Cycle occurred.

With one exception, the Minor Cycle is the finest qranularity of time
knowable with the IDAMST system. Thus, when a Task reads the absoute time,
it receives the theoretical time of the last Minor Cycle. The sole exception
to this rule is the Critically Timed Compool Bcck. When a Task TRIGGERs
such a Compool Block, the Executive will attempt to send the Update Message
to the RT at the precise time specified.

3.1.2.1.6 Real Time Pseudo-Declarations

Real Time Pseudo-Declarations are used to declare the real time entities
referred to with a Task. There are four kinds o" Real Time Pseudo-Declara-
ti ons:

a. Task Declarations,
b. Event Declarations,
c. Compool Block Declarations, and
d. Comsub Declarations.

Task Declarations are used to declare Tasks referred to in Real-Time Pseudo
Statements. They create a reference to the Task Table A entry for the
appropriate Task.

Event Declarations are used to declare Events referred to in Real-Time Pseudo
Statements. They create a reference to the Event Table entry for the
appropriate Event. If the Event is a Compool Update or Task Activation
Event, it must be declared as such in this Declaration.

Compool Block Declarations are used to declare any Compool Blocks referenced
in READ, WRITE or TRIGGER statements. They do two things: j

44

ney .:e-.e ; ^cerer-iL 7:, zv .ato Des :rp-or HOiCK Tor znetC

0. :ney access tne Coinpoo within which tne Compoo& Block is declarec,
and from it create a declaration for the Local Copy of the Compool

31ock.

A Compooi BlocK Declaration must 4.nclcate wnetner a Cornpool Block is read,
writtten, updated (both read an6 written) or triggered within the Task.

Comsu'- Dec~arations are usec to aciraCor-subs cailled within the Task.
Tney simply generate tne appropr-iate K PROCdcatin

3.1.2.7.7 Real Time Pseudo-Stadtements

Toe App~icatior. So'zwa -c eques-s the serv !ces of the Executive through
Rea'; Ti-e Pseudo-Statements. 7nere are 11 kinds of Real Time Pseudo-
S tatemien ts:

S cn e c,, e Stat erents

C c. Terminate Statemenr:s
d. , .ait Statements
e. Si na ' S emnt

41 S a tem"en ts

Real -i-e se. , . .Ils to Exec* ive rout .nes, passing
t-ne appropriate -n -ormatior, is pdac'~ezers.

J. .2 7 5 , . Stl':erer.-

Scnedu'e -r s 7-S -.j t Scnedu'e anotner Task. A
Schecd1A7e State -_nr t. ne -c-7owin(in-For700 O-:

a. The a ahe.k c
ne 'or / J :rea-eo

C. ne rc -;:, a-,,.t Event Condition Set of

_a y, n tne Event Conci zion Set o-,,

- Y.3n r-yc'.e Evt-,-., i f any, ;In tne
-. 3. d~sN.

7. .~. - ~ c tcrSet s are nenFirec !Dy
*~~ > . n ccIexre sson 'Is:

'...~r 4%u ~o77~AD <' vent exn'ressior>

- -- -*- -,-->

Each <condition> in this expression corresponds to a Condition in the Event
Condition Set. The presence of a NO' indicates that the desired value is
off; the absence indicates that the desired value is on. The Events named
iTthe <event set> are the Events associated with the Condition.

3.1.2.1.7.2 Cancel Statements

The Cancel Statement is used by One Task to out another Task into Uninvoked
state. The Cance, Statement incl,des t he name o the -ask to be Cancel"ed.
This Task must either 2e the Task wit'n whnch the State-ent is executed,
or a son of that T ask. a son iS cancelled a~l the descendents o" the
son are also cancelled automaticalv. IF a Task attempts to Cancel 4 tse
it will not affect its own state, but w4"1 Cancel ai o~its descendents.
If a Task specifies itself in a Cancel Statement, it must be declared -n
a Task Declaration within itself.

3.1.2.1.7.3 Terminate Statements

The Terminate Statement functions identically to the Cancel Statement,
except that it returns a task to the scheduled state.

4 3.1.2.1.7.4 Wait Statements

Wait Statements are used by Tasks to place themselves into Wait state
pending certain occurrences. There are four kinds of Wait statements:

a. Absolute Time Waits
b. Relative Time Waits
c. Latched Waits
d. Unlatched Waits

An Absolute Time Wait places the Task into Wait state until a specified absolute
time. If the specified time has already occurred, this statement is a No-Op.

A Relative Time Wait places the Task into Wait state for a specified period
of time. !1 the specified period is non-positive, this statement is a No-Op.

A Latched Wait olaces the Task into Wait state until a specified Event
reaches a specified "desired value." If the Event already has the desired
value, this statment is a No-Op.

An Unlatched Wait places the Task into Wait state until the specified Event
is changed to the specified value. This statement is never a No-Op.

3.1.2.1.7.5 Signal Statement

A Signal Statement sets a specified Event to a specified value.

3.1.2.1.7.6 Read Statement

A Read Statement copies the value of a specified Compool Block into the
corresponding Local Copy. If the Comoool Block is a GLOBAL Copy then no
cita transfer occurs.

46

?... ,.7.o Trgger Statament

A Triqger Statement reqests the Executive to send tne Local Copy of the
specified Compool Block to the appropriate RT at a specified time. The
soecified time must be between two Minor Cycles and one Major Frame fromthe time the Trigger Statement is executed.

3.,.2.1.7.9 Event Statement

_ -ven- Stae:en: yie.cs tha vlc.,e cf Tne Lvent wnicn has been passed as an

ar,,,ent. Tns Event must rave Deer previously declared in an Event Declaration.

.. 2..7.I Tas Conaition Statement

The Task 'on~c.io .Statenen is applied to a Task. This function yields the valueTR7 if the task -..
UE f hNVKED, FALSE f it is rot.

?.2A. .7 Ti:,e StoteTert
- -e, Ie t,:"fs crt K>: >.zc c~:>ias - 3' v't signed integer signi-

..t . a. S nCe sysce,. nit lIzation.

'Iaster z:ecvutiv,.'-erfaces

. sur eaec ercer nter ce

V: !'L Z-~ 3' Y "<; Yte~ Re- ri ta' -zat -n te Vas ter
S e L a . z task t re Lureoules the

otner Aop tc , .

Applications Sofe r: . - o e cnditions ar, corriunlcate tre conditions
to sr.e bsystem "c s Mort ir.ary source of errors wi b be the
Equips functions. n>s I .etermine any errant status with equip-
ment and sensors & c . re errors to tne Subsystem Status Monitor.

.he Subsystem St,.-> ne 'e.:: e error arc gatners error statistics.
if the last error . : . : sior-: - Dr trene were too many sucherrors, tr.e Suns,.- L .- 7nL, v.:~ c [..' "h C q .. u a o . T e on i r -

C uo1 r to . re o,7 cura-
a*~ treC a~

-:,a.de to war>.: :^c. , , e..;rqgrator c n ' voKe the Recon-
gfration Unct,:" v-1 -_,e i, ev-,ce fc~or ,,see 3.3. .

3.1.2.2 Jovial J73/I Compi'er

Since certain portions of the Executive nust be written in assembly language,
the Executive must be cognizant of and ctopatible with the calling conventions
used by the Jovial C73/I compi'er. For -use under Soltware Development and
Verification System (SDVS) in the interpretive computer simulation (ICS) mode,
the Executive must use the calling conventions specified for the IDAMST
processor. In Statement Level Simulation (SLS) mode, the Executive must use
the calling conventions specified for the DEC 10.

3.1.2.2.1 J73/I IDAMST Processor Run Time Conventions

The procedure linkage convention is:

1. A parameter list is a series of parameter addresses, stored one
per word. A function has an additional compiler generated parameter,

described by the last entry in the parameter list, to receive the
function value.

2. An @ procedure PP has DSIZE(PP) stored in the word immediately pre-
ceding the procedure entry point.

3. Register assignments are as follows:

0 - Volatile, i.e., may be changed by called procedure.

2 - Contains procedure return address (set by JS instruction)

E - @ space pointer, set to the called procedure's work space
address when the called orocedure is an 9 procedure.

F - Parameter list pointer.

4. it is the responsibility of the called procedure to preserve the
contents of recisters 3 through E.

3.1.2.2.2 J73/I DEC-10 Run Time Conventions
2

Procedure Linkage Conventions

The standard DEC-10 linkage convention is used by J73 object code. The conven-
tion used is as follows:

R17 describes a linkage stack. The right half contains the address-I
of the next free stack word. The left half contains the complement
of the number of words-I unused on the stack.

R16 is used as a parameter list pointer. A parameter list is a series
of parameter addresses right justified and stored one per word. The

From Appendix E of the Jovial J73/I Computer Programming Manual, Computer
Sciences Corporation, October 197 .

2From AnDendix D of the Jovial J73/i Compute" Programming Manual, Computer

Syrces Corooration, Octoaer 5.

left half of e~ach' parameter it- entry is zero. Preceaing trie
porameter 1Iist "is a parameter ;ount word containing zero in the right
tbAlf and tk.e negative of *ie Aiw of -a.*auten~ in~ the -left belf.

* RO is used as the function valueL retumr register for.-calls to 'FORTRM
functions. For J73 furnctions, an a4ditiocal pam~me1"e (escribe
the last entry in the parwtr'Ttt) is passed V*Weive At
function result.

*Registers RO,. RI, and tR16 are considered to be v olatfle registers.
That is, their contents need not be preserved by the called procedure,
Registers R2 through RIS and R17 must be preserved by the calleO.:
procedure.

* A call to a procedure PI is done 4s follows:

Kov I kI6,?L U ~T PARWMTER UtST A= gSS
plj.' ;q- 7. ALL PI

RETqRN\ HERE

J73 Paraiieter Passins

-73 procediure pdraineters are passed using the standard DEC-10 param~eter list
conv'ent',on. ,.acn actual pardmeter is passed using a parameter Iist word as

a'iue D.ut ,erareters - 1,,a type conversion must. h; aplied to the
C ara.-, er or t-n .c par~.m.ter is not conta~oed in storage

exact;,j a,, ' tne *'C,^a~ Pd-a~oieer istored in consecutive full words)
then -~ -, .,_ o-4 the actual parame':er, converted if necessary, is
assir_, tc -e tam-, before tac ca ,,i. If thi s temp assi gnment i s done,
the ciu Less of to tmp s passed in, the ' arameter list. Otherwise,
th.e arcrt- o e actual pa.rameter is passed in the parameter list.

Te co pcr-e cGgue (the initia;i code for the orocedure)
copli~ ;o: z~u~i~ers sing tre address specified in the

para..........hE -ra' parameter.

* VajuQ _-z- ora ,t-s t.p orverzion inust :)e applied tc tne
fo rmi ae*issi r.d ro the actuai o)ara'eter

of <~'-'1 m 'r re rot a7locate(to thoa same
fluTD,~ tne da-ss .-f -.emp which matcneb
to.e -,, '-Jassd -in tn.-, p . r a i e t er sz. btnerwise, the
actu Da _cc *, cre -dramc~ter st. Te c i, led

pra~ r- -c ~~e ec ~ -leicce oef r orCteure
c O -ccc usirthe aodres: specfiei

Qr - r, y. upon returr from the
r0 e w araci~e-xr Ifor hi a temp was

W z. py zre value contained in the
.i~iparametrr

* a~ :'~ carcsot tne actual
Pd rc ur K:- 'aa e LS. ne CidProcedure will

T1. j jE 13 g E3T kbItT~ A1CA~~

use this actual parameter address for all access to the formal para-
meter in the procedure.

J73 function results - J73 function results are returned using a
compiler generated value output parameter as the final parameter. The
calling procedure supplies in the parameter list the address of a
temp which will contain the function result value upon return.

Parameter procedures - The address of a two word packet is passed in
the parameter list for parameter purposes. The format of the packet
is as follows:

PEP

PAP

where

PEP is the procedure entry point address

PAP is the procedure @ space pointer. This value will be placed
in R15 immediately before calling the procedure. It will
only be used by a procedure which is internal to an @ pro-
cedure to locate the procedure's local storage.

Parameter labels - The address of a two word packet is passed in the
parameter list for parameter labels. The format of the packet is as
follows:

LADR

RPKT

where

LADR is the address of the label.

RPKT is the address of a two word register save packet which
contains values to load in registers R17 and R15 respecitvely.
It is only valid to transfer to a label parameter if the
procedure containing the label is currently active. The
values for R17 and R15 are those established for the
registers in the containing procedure prologue.

3.1.2.3 SDVS

To be useful in the development stages of the Application Software, the Executive
must run under control of the Software Development and Verification System (SDVS).
In Interpretive Computer Simulation mode, the Executive should be identical to

50 ,1

tfa sed on thae 1DAMS7 processor, hoioever, the Executive musa also be able
ti: interface w-itn the Statement Level Simulator (SLS) and the Functional Data
Bus Simulator (FDBS).

3.1.2.3.1 SLS

In SLS mode, those parts of the Executive which are written in assembly language
must be written in DEC-10 assembly code. The SLS mode Executive must be corn-
patiole with the conventions used for the handling of simulated interrupts and
with the calling conventions used on the DEC-10.

3.1.2.3.2 FDBS

When, the IDAMST Executive is running with the Functional Data Bus Simulator
(cDES), the 3CIU interface functions of11 the Local and Master Executzives will be
paerforred by t.ne PD5S. The Executive must be able to interface 4ith the con-

* ventior~s of the DBS. Tnese conventions are currently undefined.

3.2. 4 PA:.EFAC

PA-EFAC a'.locazes and ,nitialiizes the Executive Ta~swhich rive the IDAMST
:XaCUt Ve. T- ese taoes describe tne attributes ana interreliations of the
vari cus cannnsof tne IDAMST Application Software -actilne-readable form.

dhrea toilo categories of Exec.itive Tables: Loca-! Executive Tables, which are
re-ererced Dy "h e LOal Executive * and Master Executive Tables, which are
referenced n y tie Master Execuzive.

..... . ocat E-xecutive Taoles

The Local Executi- ,ve Tables are used for control)f Tasks, Even ts, Compool Blocks
and COMSUns. They also concain tne information necessary for all I/N processing
other than the control of the Master 8CIU.

W .. 2.4.i.l DMA Poinrer a"oK

*The Local Execuo', uses Two 64-4-orc bilocKS of pointers for DMA access by the
BCIU. The first DYA ~ r3lcc.\ is usco on even numbered Minor Cycles; the
second on odd, lr a Y.jc, so .-e :' snre pointers are fixed and some are
dynamically sa . vary zir.e tne OMA Poin'er Bloc,, is used. PALEFAC should
determine whicr, Do-, er-S drt --c era-.n fT0ed and wsi ch should De maintained
c-ynai cal ly. Ii ,ewer tns31 sync:hronous 1/0 blocks are
referenced by Zsc, nen all tne Dointers except the Asynchronous Pointer
may remain fi4xLc..

Tnie forimat of SiO~ .tc ~CK is shown i1r Figqure 3.1.2.4._,.1-1. The

actual amount -nis snowr, as <'xedl is, of course, hypotheticai.

Each block must Dcjiln a^. an acorass civ-is-ible by o4.

bycrrsc. * .ea y te ita. jNutC ecrmine whicn
DMA Poin-.ers tan.nK- te DMA P,7wcr S-5 l- k on any given Minor
Cycle. There --oicat:Uu~n~r Ji~s pure.ose,

w~rd

0 Unused

FIXED Fixed Pointers to Synchronous Compool
Blocks Received by Processor

n1

n 1 1

VARIABLE ' Variabie Pointers to Synchronous Compool
Blocks Received by Processor

36

N 31 Asynchronous Reception Pointer

32 Unused

33

FIXED Fixed Pointers to Synchronous Compool
Blocks Transmitted by Processor

n2

VARIABLE Variable Pointers to Synchronous Compool

62 Blocks Transmitted by
Processor

63 Asynchronous Transmission Pointer

Figure 3.1.2.4.1.1-1 Format of a DMA Pointer Block

52

I.

d. Thne Synchronous, Pointer (SYNPTR) Taole

1. Tte SYNPTR Index Table
c. The Pointer Block Descriptor

The S.NPTR Table contains two blocks of pointers for each Minor Cycle. One
contains the addresses of all compool blocks received during the Minor Cycle,
excluding the compool blocks whose addresses are fixed within the appropriate
DMA Pointer Block. The other contains the addresses of all compool blocks
transmitted during the Minor Cycle, excluding the addresses fixed within the
appropriate DMA Pointer Block. Note that any one of these blocks of pointers
may be null (if, for instance, all tne DMA pointers are fixed within the DMA
Pointer Blocks).

The blocks of pointers for two or Tore Minor Cycies may occupy the same physical
,ocation within the SYNPTR Table. For instance, if no blocks are received on
Phases or 33, Period 64 and no blocks are received on Phase 1, Period 33,
then the data received on Minor Cycles I and 33 will be identical, so the blocks
of Recelve Pointers for these Minor Cycles need not be duplicated witnin the
SYNPTR Table.

Furthermore, the block of pointers for one Minor Cycle may be wholly contained
witnir the Diock of ocinters for a different Minor Cycle. For instance, if no
compool ,ioc-Ks are transmitteG on Phase 18, Period 64, but two compool blocks
are transmitted on Phase 17 , Period 64, then the block of Transmit Pointers for
Minor Cyc 17 will be:

n

* 'Transm-1z poir.:ers for

nn-+nm -' Transmit pointers for

n + m + "M C#17

ans.,)o-:ntcrs Tor
f Perioa i, Phase 17

n + m - i

Tne SYNPTR tn. - ,c ocoazc :!e Wocis of Receive and Transmit
)ointers witnr SY\P - d,y Mi2or &'c e. It has one entry for each Minor
Cycle Number. 7, , nt ,mation in cac:, entry is:

t e,. .3E --c i r i o nor

U7. ,u: ?,.,n-nrcro ,s Receive <'ointers for this Minor Cycle.
, .,ce ve ?oi,ter r, SY;PTR for this Minor Cycle.
0 ,w oros Transiit Poirters for this Minor Cycle.

S ff r,- ntcr ,n SY'.PTR for this Minor Cycle.

-_ .e :y n) LOa xec~tivc to oetermine which
tn . . ixcd and wnich are variable. The Pointer

3.OCK Descr'ip . wcrds

53

Word Description

0 Address of first variable Receive Pointer in Block 0
1 Address of first variable Transmit Pointer in Block 0
2 Address of first variable Receive Pointer in Block I
3 Address of first variable Trans-it Pointer in Block

Thus, for instance, the value of word 0 is LOC(DMA Pointer Block 0) + (number

of fixed Receive Pointers).

3.1.2.4.1.3 Task Tables

To control the state of the tasks within its processor, the Local Executive uses
two tables: Task Table A and Task Table B. Task Table B contains entries for
each task resident i, the processor. Task Table A contains entries for each
resident task and for the controller and sons of such tasks, whether resident
or not.

Task Table A is ordered according to the invocation tree, according to the
following rules:

a. The controller of a task always precedes the task.
b. If Tasks A and B are siblings, if A precedes B, and A is not the

controller of B, then every sor of A precedes B.

The relative order of siblings is arbitrary. Note that this ordering extends
across tasks in all processors and must be followed within the Task Table A
of each processor, although no single Task Table A need contain entries for all
tasks.

Whenever a task is referenced by the Application Software or by the Local
Executive in another processor, the Task Table A entry for the task is referenced.

Task Table B is ordered according to priority, with the highest priority task
first.

The Task Table B entry for any task is used internal to the Local Executive for
referencing the task.

Table 3.1.2.4.1.3-1 represents the various items to be found in each entry of
Task Table A. Within the Executive, entries in Task Table A are referenced by
entry number, starting with one. Within the application software, a task BB
is referenced by an REF TABLE T$BB, where LOC(TSBB) is the address of the Task
Table A entry for BB.

Item Description
it- m Non-resident bit

2 Processor

3 Pointer to Task Table entry

4 Non-resident bit for Controller

5 Processor # of Controller

6 Pointer to Task Table entry of Controller
7 Invoked/Uninvoked 24it

8I Number of Descendents

Table 3.1.2.4.1.3-I Task Table A

7:e 4l is on if the task is non-resident. if the task is non-resident, Item #Z
is the processor where it resides; if tne task is resident, Item #2 is zero.
For resident tasks, Item #3 is an index to the entry for the task in Task Table
B. For non-resident tasks, Item #3 is an index into Task Table A in the
appropriate processor.

items #4-#6 point to the controller in the same way that Items #1-#3 point to tf
task. These items may prove unnecessary in the ultimate implementation.

Item 47 is on if the task is invoked, otherwise it is off.

item -8 is the total number of descerdents of this task with entries in this
processor's Task Table A. Descendents includes sons, grandsons, great-grand-
sons, etc.

aTle 3..2.4.'T.3-2 represents toe various items to be found in Task Table B.
Task Taole 6 has entries onIy for resident tasks. Like Task Table A, it is

* rePerenced 1"y entry nr.mber starting with one. Thus, if Item -3 of Task Table A
for TAS, has a value of N, the entry in Task Table B for TASK begins at LOC(Task
Table 3) + \N-l){entry !engtn for Task Table B).

te2- Description
Task Status 'urnvoed/inactive/waiting/dispatchable)

Preset L , Condi tion Set

Desirea Event Condition Set

Latcrec/un, toned Mask

5 Sack Pcnter fo: IWai; Crain.

6 ,-orwarc Potter 'or wait Crhain

7 T i;.e or Event Woi -te Jr

S Starting AGaress of Task

9 :nit, .ue for COMSUB Stack Pointer

10 SCve Area 'or CCM UB Stack Pointer

S>. ve qea for" Registers and PC

!12 .kestart A dress

13 -_r tcr : _ A1§.vation Z'art

14 v 'Ie ed o ,t

i 5 -rty

1-'Die 3.1.2.4.1.3-2 Task Table 3

Item :] is 'o to -szcae tne stdte of tne task. The values for Item #l are:

- -

55

Item #2 is the Event Condition Set of the Task.

Item i3 is the Desired Event Condition Set.

Item 14 indicates which events in the Condition Set are unlatched; a "one" in
any bit position means that the corresponding position in the Condition Set is
for unlatched events.

Item #5-#7 are used to implement the WAIT statement.

The implementation of a timed response requires the establishment of a time queue.
This time queue will be defined in real time by the Back Pointer and Forwards
Pointer within each task in the queue. The beginninq and end of a queue are
marked by a null Back or Porwards Pointer. Since tasks are referenced starting
with one, zero is an unambiguous "null" value.

If a task is waiting on time, Item #7 is time. Time, in the Executive, is
* measured in number of minor cycles from system initialization, maintained as a

31 bit unsigned integer.

If a task is waiting on an Event or the complement of an Event, the "queue" defined
by the Back and Forwards Pointers will be used to identify all tasks waiting on
the same condition. In this case, the high bit of Item -7 is on, and the low
order bits point to the appropriate Event.

Item *8 is the address of the first executable statement in the task.

Item 49 is the address of the beginning of the Comsub Stack Area reserved for
this task. See "Comsub Local Storage Area" for further information (see
Section 3.1.2.4.1.8).

Item #10 is used to save the current value of the Comsub Stack Pointer when the
task is dispatchable but not executing.

Item #11 is a save area for all information which must be remembered during an
interrupt or a WAIT.

Item #12 is set, on task invocation, to the starting address of the task.
Thereafter, it is set to the address following the most recent WAIT statement
executed.

Item #13 is an offset from the beginning of the Event Table to the associated
Activation Event for this task. If there is no such event, Item #13 is null

Item #14 is the flag to specify whether the task is to run as the highest
priority task, and therefore be called directly from the dispatcher and return
control without leaving privileged mode.

Item #15 is the priority assigned to the task and will be used to determine the
relative order in which dispatchable tasks will run.

56

PALEFAC will spply the number of entires in Task Table B as a single word
unsigned irteqer.

3.1.2.4.1.4 The Event Table

The Event Table contains an entry for each Event referenced with the processor.
The information in each entry is shown in Table 3.1.2.4.1.4-1.

I terr, Description

Event Value

2 Initialization Value, State I

3 Initial zation Value, State 2 Restart

4 Initialization Value, State 3 J
5 Number of Non-Local Copies

6 Number of TasKs Pointed to

7 Pointer to Task Aaiting on Event

8 Pointer to Task Waivinq on Complement

9 Processor = of Ist Non-LoCal Copy

10 Event Table Index of Ist Non-Local Copy

9 Processor o td Non-Local Copy

10 Even: TaoLe incex of nth Non-Local Copy

11 3:T Position, in Task I

12 Task Tabie 6 Entry for Task I

-,I At , Pus 1 17. 1n T&sk M

L12 "s Taae try for Task ,i
-.-1 vcn abe -ntry

item -i is the a,': C- zne Vent.

iems -2-:4 a-e ert-: ,e - ,1 ed as values for restarts. The subject of

restarts requ,-es furtner study.

.tem -5 is th," of L ' ,S,os -trer tnan this one which reference the
same event. T -,-s .ei nc-tes the numoer of items of types f9 and #10.

:tem a6 is the :-.':L:(.; ks ,,mrin znis proccssor whicl include this event
.:r,er evert csrd - se:s. Irs item indicates the number of items of

types -11 anc K?.

57

V:

Item 17 points to a task waiting on this event. If there is no such task,
Item #7 is null.

Item 48 points to a ta~k waitina on the complement of this event. If there is
no such task, Item #8 is null.

Items #9 and #10 point to Event Table entries for this event in other processors.
Item #9 is the number of the processor with such an entry. Item &70 is an
offset from the beginning of the Event Table in that processor to the entry
for this event.

Items #11 and #12 locate the position of this event within each event condition
set including this evert. Item #!I is the bit Dositior within the event condition
set, counting the leftmost bit as bit 0. Item -12 is the entry number of the
Task Table B entry for the task with this event in its condition set.

The concept of "copy of an event" requires further elucidation. If an event is
referenced by the same name in two different processors, the processors are
considered to contain copies of that event except in the following cases:

a. Minor Cycle Events
b. Compool Update Events

These events signify occurrences within the Local Executive; therefore, if the
"same" event is referenced in two processors, the two events are maintained
independently, and are not considered to be copies of each other.

3.1.2.4.1.5 Minor Cycle Event Generation Table

Each Local Execut ive ,n IDAMST uses a Minor Cycle Event Generation Table (MC
EGen Table) to determine which Minor Cycle Events to signal on any given Minor
Cycle. The format of the MC EGen Table is modeled after that of the Synchronous
I/0 Tables.

The MC EGen Table is divided into two parts: the first part contains two items
for each Minor Cycle; a 4 bit count field and a 12 bit index field. The index
field is an offset to the beginning of the second part of the Table; it points
to the beginning of a list of Event Table pointers which poit to the appropriate
MC Event entries for the given Minor Cycle. If there are no MC Events for that
Minor Cycle, the entire word will be zero.

Assuming 64 Minor Cycles per Major Frame, the format of the Table would be:

MC EGen Table

Word 0 3 4 15
0 umber of

vents or First Event for MC 0

C_ 0First Part

0 "3 4 15

vents for First Event for MC 63

58

O'Cr 3 3 4 1

74 B an,< Pointer to Evert Taole

Second Part

_j 3 4 15

N JBIank Pitrto Event Table

-rcs, for instance, to determine whi;ch MC Events to generate for Minor Cycle 73,
-^.e -cocr7 __xtcutive wi'i_ reference woro 13 of tre Table, and get a count C anc
ar, noEx N. Ten worcs 64'-% thro,.gh 6b3+N+C of the Taoie are the pointers to the
L-ven7 lable entriles of tne MC Events to be generatea.

re a nge~ntof Event Table Dointers within tne secono :ort o-c tne
c ny vdry. Note tr , genera-i, mTany distinct Minor Cyc'es wi cause

~ .an _ ;erTica' li st of Minor Jyc~le Events, so the total number of
no: S~a~nOL... ic far n:ekqer than 64.

2. . . ooo- Area

-,or. De.twcn tdsks aro s .c±. . commun-,cation netween tdSKS,
ace: n c,.aroucn tnie event and tCas~r,- mrecnanisms, must ze accomplisne:.

'e~se oc cj--Po.. ocs.

07crc co~c :'occx mnl ' . 6aed aerecl ny tne application
software tru-u .-,c as_ o-1: ~ sztat-emrent or 'v an RT. The
contents of a c o_ .cc :;aiv oIt ceazrinrmnea cy -6ne application, software
through tI us R AD sccrror tney may be determined by an RT.

Any compool bocv potenta ll ex-,sts in, multiple copies. Any processor which
R:ADs a compool tlocK 1ust ndvt . -)hysica' copy of that block. Any RT which
references a cOmooc. Locr, ,rj anprocassor wh-.cn WRITEs or TRIGGERs a compooi
olock is consicerec to navc -a vi;tial copy of that block.

Compool blocks cre c,.ass;.siec aocorcin-cj to tne method used to maintain consister
oetween the var-.ois copies ds:

6. Sync

oynn~rnou cc ~ayecoony, e-,tner in a p :-occ's
or an RT, fror -1-" o'.e- cc ;i-Es are uo-,ceteo ny tne Mster BCTU accord'Ing
to pnase and p~

tne ccpik> . . ooc ':re ..odated whenever 2aof the
.~~~.argec, ~ ~ ~ .' SO 'cso n~nhsapy~

'7D~ o' a cO, s c vent associated w,,tn
c:. ni]ccK.

cnacede~t >; c~-.6r a tG tis mnessaqe.

A critically timed compool block has one virtual copy in an RT, one physical
copy in the Master Processor, and one virtual copy in the processor within
which it is TRIGGERed, unless it is TRIGGERed by a task in the Master Processor.
The copy in the Master is updated at the time the TRIGGER statement is executed;
the virtual copy is updated at a "trigger time" which is specified in the TRIGGER
statement.

All the physical copies of compool blocks existino within a processor are
allocated by PALEFAC in a single, contiquous Comoool Area. The format of each
comoool block is:

Synchronou- and Asynchronous Compool Blocks

Word Description

C Minor Cycle Tag Word

1 Data

n Data

3.1.2.4.1.7 DDB Areas

Every physical or virtual copy of a compool block within a processor has an
associated Data Descriptor Block (DDB). All references to compool blocks
except those within the Synchronous I/0 Tables are done through DDBs.

There are three types of DDBs:

a. Synchronous DDBs
b. Asynchronous DDBs
c. Master Critical Timing DDBs

Synchronous DDBs are used for Synchronous Compool Blocks.

Asynchronous DDBs are used for all Asynchronous Compool Blocks and for any
virtual copy of a Critical Timing Compool Block.

Master Critical Timing DDBs are used only for ohysical copies of Critically
Timed Compool Blocks, i.e., copies existinQ within the Master Processor.

All Synchronous DDBs within a processor are contained in a single contiguous
Synchronous DDB area. All Asynchronous and Master Critical Timing DDBs within
a processor are contained in a single, contiguous Asynchronous DDB Area.

Synchronous DDBs

Ttem Description

1 Sync/Async Bit
2 Number of Words ir Compool Block
3 Address of Compool Block
4 Period - 1
SPhse.,

60

ze ;s 0.: srce C& c 0 s syr cnror.3,s.

t;s toE start~fl9 address of tne compool bl0cK, ine., the address of the
<u Tag Word.

Item Y4 is th~e n.;mber of Minor Cycles oetween successive transmissions of this
4tem. For instance, for compool blocks -transmitted every MC, this value is
zero.

itemn -5 is crce phase on wnichr the compoo! clock transmitted. Tnis may range
from zero tIo the value of item'1 -4.

Asyncnroncus DDBs

I ter, Des crP t oo

Sync/Asyro Bit
2 Local COPY Bit

3 j7a rt it

* \jmber cf Nor-Locd7; ',ns ,-a Cop-,es
\~brof Words ir, Coinpoo" 3ic'ck

71 , doress of Loca& '-o-y
Offset to Update Event

'9" -quest Vector for R X
2 ffet to XIB of Hirst Nor.-Loca&

r'~~o~ Cory
* .s:Vecrr-, -rr -ir^st Non-Locai

-vs-, ca C-oy

item-s enclose,. e'' e ~-.- onl~y 0' some DDcs .

item 41 s off --c~ ' n Asynchrorous D3.

or /y o-;:r, -Is w co -locK w thi is
processor. In.c - ter i te s p re s er.

-eter 3i ;s or, Lv~r- t-rs -,lpO ock w-.nin the
~roescr r ~ r~ ~ wr,'- rr -. s Dreserc. >,ote trnat this item

carn be on 00/;= o

~-4 -s or, 'c o' OK t r On ar
7 S 0 0710e0 ri cates,

wrete rtr ., -

zw: r1 -z- cc -es of types ziO and

-e' s U~ , .Js tre MC Tag Word.

e7~~ ~ rt! O ys--c&, copy of the

Item #8, if present, is an offset from the beginning of the Event Table to the
entry for the Update Event associated with this compool block.

Item #9, if present, is the Request Vector for updating the virtual copy of this
compool block within an RT.

Items #10 if present, are offsets from the beginning of the DDB Area within
each processor with a physical copy of this compool block to the DDB for that
physical copy.

Items ll, if present, are the Request Vectors for sending updates for non-
local physical copies o7 this compooi block.

DDBs for Critically Timed Compool Blocks other than in the Master have Items
2-#4 off; Item 45-1, and Items -40 and 4I direct the update message to the

Master Copy of the compool block.

Master Critical Timing DDBs

Item I Description Bits

1 Master Critical Timing Code 8
2 Number of Words in Compool Block 8
3 Address of Compool Block 16
4 I Triggered Bit I

5 Request Vector 15
1 Forward Pointer to DDB 16

L7 Trigger Time 16

Item #1 = octal 377 to identify this as a Master Critical Timing DDB.

Item i2 is the number of words in the compool block, excluding the MC Tag Word.

Item #3 is the starting address of the Master copy of the compool block.

Item #4 is on when the compool is waiting for the trigger time.

Item #5 is the Request Vector for sending the critically timed message to the
appropriate RT.

Item #6 is an offset to the DDB of the next critically timed message waiting
for a trigger time.

Item #7 is the time at which the message is to be sent to the RT.

62

Cor,,sb Local Storage Area

-cna- must nave a StacK Area for use by the Comsubs and Executive Services
Routines wnich it calls. The length of each Stack Area must be:

a. At least long enough to accommodate the local storage for any
Executive Service Routine, and

b. Atl least long enough to accommodate the local storage for the
longest possible chain of Comsub calls initiated by the task.

W2 tre S-ack Areas for each task residing in a processor are allocated by
?ALEFAC within a single, contiguous Comsub Local Storage Area.

3.1.2.4. .9 RT keception Tables

; RT Receptior Tables are used by the Lo al Executive to identify Asynchronous
....soges received from an RT. These messages are preceded by a word containing
the aaoress and subaccress from which the message was sent.

SR. adres- usec to incex into the Terminal Originator ADdress Table
TAj. The .OAD contains an entry for each of the 32 possible RT addresses.

Eacn entry contains zhe follcwing information:

L-tem Descripton
; i Number of oossible Asynchronous messages

from this RT.

2 j Entry in SNAKE for the first message from!
L Ct. -, ...

The Subaddress NAme Keys (SNAKE, contains an entry for each possible Asynchrono
message from o,, T. A-l me-;-ges fv'om a single RT are contiguous within the
SNAKE. Each entry -n tne SNAKE contains the following information:

cem :Descr4ption
SOSbadc ress from which message was sent.

2 .]Iset into Async DDB Area to DDB for tnisi
tes Sne,

3 -. 2.4. . "0 :: :- ;...: s c,

7ALEFAC will , / lc umoar ot processors in the :A?,ST as an unsigned
in tege r.

ThLj 7s,'- ,. , ne aster Executive to control tne

• An
: V r S e proessor to

," , oc,, pGc ',essae. The Request Vectors

Ftt

are assigned starting at 16, and proceeding sequentially from there. Request
Vectors I through 15 are reserved for interprocessor Service Requests.

The Master Executive uses the Master Request Decode Table to decode Request
Vectors. Request Vector N corresponds to entry N o, the Table, counting entries
from one.

There are two types of entries in the Master Request Decode Table: one for
transmissions involvinq no masking and one for transmiss 4 ons requiring either
bit or word maskine. For messages w Tth no masking, the entry is simply the
Master Instruction Set to effect the transmission. rcr messaqes with hit or
word masking, thn information in the entry is:

Item Description

1 Maskinq aq

2 Index into Master Instruction
Supplement Table i

3 Word Mask j

Item #1 is zero, to indicate that this is not a Master Instruction Set.

Item #2 is an index into the Master Instruction Supplement Table (See 3.1.2.4.2.2).

Item #3 is the word mask, if the messaoe requires wou masking. If the messaae

requires bit masking, this Item is a!l ones.

3.1.2.4.2.2 Master Instruction Supplement Table

The Master Instruction Supplement Table (MIST) contains an entry for each
Asynchronous message which requires bit or word masking. The entry is located
by Item 42 in the Master Request Decode Table.

Each entry contains two Master Instruction Sets. The first is the Mode Command
to indicate the proper kind of masking. the second is the command which performs
the transmission.

3.1.2.4.2.3 Master Remote Terminal Request Tables

To decode asynchronous requests from Remote Terminals, the Master Executive
uses two tables, the Remote Asynchronous Table (RAT) and the Master INstruction
Keys (MINK).

RT asynchronous requests are identified by:

a. RT number, and
b. Bit position in the Activity Register

The RT number is used to index into the RAT. The RAT has 32 entries, one for
each oossible RT number. The format of the RAT is:

64

RAT

rtern Description

1 Number of possible requests for
this RT

2 i ndex to first MINK entry for this
__ __ __

'tem 41 i the total number of possible asynchronous requests which this RT
may init~ate.

item #r2 is an index to the firs.- entry in the MINK for an asyncnronous request
which may 'be Initiatec by this RT.

The MINK contains an entry for each possible RT request. All the requests for ar
gi'ven RT are contigus witnin the table. The current format is:

MINK

r 0escript or

Mask for Activity Register
j 2 Master lnstr,,c-L-on Set

,tem. is a mask for the Activity Register. it has one bit on, in the position
whjcn signifies this partcular asynchronous request.

Item #2 is the Ma~ster instrdct'on Set to effect the necessary asynchronous

transmission.

3.1.2.4.2.4 Y,,uster Syncri'orous -./ Tables

The Mster ~ncnrno /O .10 Tn~es are u.sed 1 y the Master Executive to perform
0 ~the appropriato syrncnronous 5us transaictions every Minor Cycle. Two tables are

used for this puroose:

a. Tha Syrcrnroious instructior Jisz
b. r* .,iZt"zS.o P3: c Lre~ I' C0E

Th e Synchron. . .srctc 5 cca one b1OCK Of instructions for eacn
pnase and pe,<;-- o'- ' n(ore :asyrc ,ronous Bus transactions. Tnus, it

continsuO 3 tCKS vi~reMC4s tro nuirber of Minor Cycles Der

Major Framoe. contains one Master insc'rjcc.ion Set for eacn syncrtonkik
L s trisisr- f,,r ed for tnat psse ard Deriod, plus a Link Instruct
Pa ir. The 6 r'; (ii% re Gynr~rcai>d'] set by tne Master Executive
to poirT to t -- 313,7K ct' -ntructions to oce)erfor,,,ed during the current
M Ior Cce. 'c 2. :7'cc fthe iat rstruction block is set to a

-.t nstrUL--:;, c; -r W-it-In trk' ~A COCUtve.

If any of the synchronous transactions require bit masking, the Master Instruction
Set which effects the transmission will be preceded by one to send the proper
Mode Command. If a transaction requires word masking, the transmission Instruction
Set will be preceded by two Instruction Pairs. The first will be a No-Op Instru-
ction with the interrupt bit set. The second will be the appropriate Mode Command.
The word mask will be contained in the second word of the No-Op Instruction.

Synchronous Instruction List

Word

0 Master Instruction Set

2 Master Instruction Set

block for phase = 0
period = 1

N Link Instruction Pair

rM Master Instruction Set

block for phase = 63
period = 64

L Link Instruction Pair (if it exists)

The Instruction List Pointer Table is used by the Master Executive to set the
appropriate Link Instruction Pairs every Minor Cycle. It contains 2(MC)-l
entries, where MC is the number of Minor Cycles per Major Frame. There is one
entry for each phase and period. The entries are arranged in ascending sequence
first by phase and then by period, so that the entry for phase = PHASE and
period = PERIOD is entry number (PHASE + PERIOD), where the entries are counted
starting with one.

Instruction List Pointer Table

Item Descri tion

1 First Word in Instruction Block

2 Last Word in Instruction Block

Items #1 and #2 are the absolute addresses of the last words of the instruction
block for the period and phase corresponding to the entry in the Table. Note that
item #2 points to the second word of a Link Instruction Set. If there is no
instruction block for tTis phase and period, items #1 and #2 are zero.

66 .

3.1.3 IDAMST Executive Functional Description

E-very processor in the IDAMST system contains Executive software. Executive
software consists of two parts: A Master Executive and a Local Executive.
In general, the Master Executive provides system-wide services, such as data
bus management and system control functions, while the Local Executive
provides services to the Tasks located in a processor.

Each processor contains either a Local Executive or a Local and a Master
Executive. Specifically,the Master processor anU-the Monitor (backup
Master) processor contain a Master Executive, while the other processors do
not.

The code of a!- Local Executives is identical. Each Local Executive can
operate in either Remote or Master Mode. in Master Mode, the Local Executive
supports the functions of a Master Executive, while in Remote Mode the
Loca' Executive is not cognizant of the Master Executive, even it is
present in the sar;e processor.

,,-e Lozal xecutive i. the Master Processor always operates in Master Mode;
r tne Loce Execuzive2 in .he Mon-tor Processor operates in Remote Mode
except in tne case of keconfi;uration. The Local Executives in the Remote
processors always operdte in Remote Mode.

orr , f:ow cortro aria data for Synchronous and Asynchronous processing
in, Remote anc Master Modes are shown in Figures 3.1.3-1 through 3.1.3-5.

67

p.I

. V

_DATAA BUS 4

w

FORMUJLATE SYNCHRONOUS SYNCHRONOUS BCIU
NEW MINOR RECEPTION TRANSMISSION

*CYCLE PROCESSING PROCESSING

W DMAPO MES EXCTIE

THIS PAGCE IS BZST QUALITY F&&CTICA.=L
7RM0U -' 0N

I

SET UP NEW IOPERATIONS NOT SNHRN SYNCHRONOUS C

MINOR CYCLE I INVOLVING RECEPTI1ON TRSMISIONUS

TRASMI SSO

____E _ f DAT BU i 5

ST PROCESSIUS

T SET F
M ,ERI FoISTE S UP MASTER
E *; NEW MINOR NEW INSTRUCTION MASTERS R -- -- CYCLE INTU- SET EXECUTIVE

MINOR CYCLE POINTERS EXECUTIVE

DMA 1
POINTERS =i

* j MINOR CYCLE SYNCr{RONOUS
EVENTS COMPOOL APPLICATION

BLOCKS SOFTARE

FIGL ,: .3- 2 . SYNCHRONOUS PROCESSING IN MASTER MODE
69

(1) DATA BUS

_ _ _ CD I--_ _>_
b_ _ -cc L"4

ASYNHORDNOUS VECTOR ASYNCHRONOUS B~
1TRANSMISSION INT ERRUPT RECEPTION BI
PR OCESSING REGISTER PROCESSING

rC

PRM TGPROCESSING LOCAL
EXECUTIVE

EVNT ASSASYNCHRONOUS SOFTWARE

PFgW. 301.3-3 Asycvomous Processintg fn RPiete Med.
70

___A7A BUS _ _ _ _ _ _ _ -

II

32ERATE AYCROOASYNCHRONOUS ASYNCHRONOU

REQUEST VECTOR IROCESSING NOT !TRANSMISSION RECEPTION BC

INTERRUPT INVOLVIN j ___CESI PROCESS ING

IDECODE REQUEST SEND MASTER MATE

VECTOR :N.TRUC.ION EE6I

i AI

:ASYNCHRONOUS SNIR
TRANSMISSION RECEPTION

A LOCAL
EXECUT

COMPOOL BLOCK

.AN 3"IN G IHANDLN INOLING I

~VEN~h IAPPLICA jTASKS COMPOOL LCS S AR

F ~ 3~ ~- 4 ,synchrorious ?rocessirig in~ 4eter ModO

71

I minorcy~1e, jnous/synt MONITOR

rans BCIU

Intrr n ro Monitor MONI TOR
Timr a'didtoi r Comm~and EXECUTIVE

Set Timier Set up minor

Seup set up MONITOR
__________new _ DALOCAL

* minor -M PointersEXCTV
cycle Pointer4

InterruptlF~ 1 ~p K e .MSE

Tiite St nne w minor cnvndEXECUTIVE

Asynchro- MASTER
S~et up nous/syn-

minor chronous BCIU
tran; -cycle

MASTER
Set up Set up DM4A LOCAL

mnr new DMA Pointers EXECUTIVE

Figure 3.1.3-5 Master-Monitor-Local
Executive Processing

72

3.1.3.1 Local Executive

Tre IDAMST -cca, Executive may De entered in two ways: through the execution
of a Real Time Pseuoo-Statement in the application software, or through an
External Service Request from the 5CIU or the Master Executive. To avoid
re-entrancy and maintain proper sequencing, the processor may operate in anyone of the following moces:

a. Normal Mode
b. Privileged Mode
c. Uninterruptable Mode

Normal Mode Is the moce of operatior for Application Software. In this moce,
any External Service Request received Dy the 3CIU will cause immediate entry
to tre Executive to service that Request.

Pr-viiegec Mode is tne normal moce of operation for Executive routines.
:t is marKed by Ure fact cnat the Privileqed Mode Flag is on. in tns mode,
any External Service Request received oy zhe BCIU will oe queued for
serv-,cin9 at a later date.

.:erru oia e .. sec ror the imediace se-vicin; of interrupts,
an 'or cer:ir cr:-ca, operatizrs wirnn tre Lxecutive. It is marked by
cre fact tnct a': ;errupzs are cisaDled. In this mode, External Service
, cess e -Sa' recogrzed.

-or rscz or moo]ar-,ty, : e Zxecuve -s cviaed into four sections.

3. re .,cLuOr e -
c. The oal .XLCa. ' e
d. The -cc", E-xecuzive n-h Lzto and Recover), Function.

Te .ardware Interfce Co - :. r-esponos to interrapts, and in
general supports -ne -r, ter ac w th cre Ciu. in Master Mode, the Master
Executive runs)noer tne na. dware interface Control Function.

The Application -erace, arovades the interface between Real Time
Pseudo-Statem&,n t.-s .plication Software and tne main
functions of cc CC tLVW.

.ne nca: ee. a -m crvces of the Local Execozive,
including c-U: , F, .Cpoo, 3locK

The Local Executive Initialization and Recovery Function is responsible for
initialization of the Local Executive after the system is loaded and for
recovery or re-initialization in case of error conditions such as loss of
power or other hardware-detected errors.

3.1.3.1.1 Hardware Interface Control Function

The purpose of the Hardware Interface Control Function 's to isolate the
hardware, i.e., the 5CIU, the Timers and the orocessor-nenerated interrupts,
from the rest of the Executive, so that hardware-re'ated functions can be
performed without concern for the ohysical details.

The primary job of this Function is to supply the Local Executive Proper
with incoming Asynchronous messages ir a locical lorm, to accept outgoing
Asynchronous messages from the Local Executive nrooer in a lonical form,
and to worry about the phys'cal details of receotion and transmission, such
as buffers and BCIU registers.

The Hardware Interface Control Function processes all interrupts; therefore,
it is responsible for invoking the Local Executive Initialization and
Recovery Function in case of power failure, memory protection violation
and other hardware-detected errors. In Master Mode, this Function must also
invoke Master Executive services to respond to interrupts generated by

r the Timers and the Master BCIU. This Function is not responsible for supplying
the BCIU with Master Instructions in Master Mode. However, this is done
by the Master Executive, which runs under the control of this Function.

A general outline of the interactions of the Hardware Interface Control Function
is shown in Figures 3.1.3.l.'-l and 3.1.3.1.1-2.

3.1.3.1.2 Application Interface Function

The purpose of the Application Interface Function is to integrate Real Time
Pseudo-Statements into the control structure of the Local Executive Proper.
The Application interface receives Real Time requests from the application
software in its processor as well as requests from local executives in the
other processors. The application Real Time requests fall into three cate-
gories: events, tasks and compools. These cateQories are handled by different
modules of the Executive Proper. I1 the requests need to be transmitted to
other processors, the Local executive DroDer requests the appropriate
asynchronous transmission.

A general outline of the interactions of the Apolications Software Interface
is shown in Figure 3.1.3.1.2-1.

3.1.3.1.3 Local Executive Proper

The purpose of the Local Executive Procer is to provide the essential Local
Executive services: control and oroces;4ino of 'asks, Events and Compool
Blocks.

The Local Executive Proper accepts Asynchronous messages from the Hardware
Interface Control Function and oerform; the services which they request, and

74

r

- CL
i~~I, ~ Dzz

I~CL -j

6

f 0

"-. I 2cc

LAi

cz

-. 3l,

('.

LJj

HARDWAREDETECTED
PROCESSOR BCIu,
ERRORS

IERROR AYCRNU
PROCESSING j CYCLE RECI-7TION TRANSMISSION

GENERATION PROCESSING PROCESSING

HARDWARE INTERFACE CONTROL FUNCTION TIMER
PROCESSING

LOCAL O0CALMOTR
EXECUTIVE EXECUTIVE EXECUTIVE
INITIALIZATION PROPER
AND RECOVERY

Figure 3.1.3.1.1-1 Interactions of the Hardware
Interface Control Function in
R&Tote Mode

EXPIRATION
10 cCZ S sR iNORMAL 'ERROR

ERO OPERATIONON

* 'yCRONOUS ASYNChRONOUS TIMER

SSN'cy>- TRANSM :SS:ON 'R,-CET7CN. PPOCESSING
~EEAT:ON PROCESS-NG PROCESSING

~A~v~AE LTERACECON-RO
U ~N C :c N

OCALMASTER
EXOCU7L ECTVE

EXEXUCUVO

-: ON-

zn. rrac a'e :nterfacei

~Cntro. -ur~ctior in Master Mooe

7-1

accepts and processes service requests from the Apolication Interface
Function. It formulates and sends to the Hardware Interface Control Function
Asynchronous messages requesting correspondina services in other processors
or RT's.

In addition, this Function responds to new Minor Cycles by signallino Minor
Cycle Events and preparing new DMA Pointers ror Synchronous I/0.

A general outline of the interactions of the Local Executive Proper is

shown in Figure 3.1.3.1.3-1.

3.1.3.1.4 Local Executive Initialization and Recovery Function

The Local Executive initialization and Recovery Function provides the
followina services:

a. Initializes the Local Executive after it is loaded from mass
memory.

b. Terminates Executive operations on detection of a "power down"

*, condition.

c. Re-initializes the Local Executive upon power-up.

d. In case of hardware-detected processor errors, including illegal
operation code, boundary alignment error, processor pointer error
and processor memory protect, terminates Executive operations and
sends a failure message to the Master Executive.

e. Upon detection of a Power Down condition, attemwts to save the
state of the processor prior to the failure.

3.1.3.2 Master Executive

The IDAMST Master Executive consists of the followinq major functions:

a. Master Initialization Function
b. Master Time Control Function
c. Master Synchronous Control Function
d. Master Asynchronous Control Function
e. Master Error Recovery Function
f . Mas Me!lnrv Control Func ti on

The Master Initialization Function provides for initialization; it loads the
Remote and Monitor processors from Mass Meriory, and performs initial testing
of the system.

The Master Time Control Function keeps track of the passage of time, and
maintains proper synchronization of the various Executive services.

The Master Synchronous Control Function controls the operation of the Master
BCIU in the transmission of Synchronous messages.

78

HARDWARE .NTERFACE CONTROL

FUNCTION

0
i:

0,

>--.

LOCAL EXECUTIVE PROPER

4 II

APPLITCATIONS i- .2

INTERFACE FUNCTION c- '

APPLICATION SOFTWARE

Figure 0.?..,3-i .rcractlos .f the Loca'
Lxccjtive Proper

T9!

The Master Asynchronous Control Function controls the operation of the
Master BCIU in the transmission of Asynchronous messages.

The Master Error Recovery Function responds to routine errors encountered
in the functioning of the Data Bus.

The interaction of the various functions of the Master Executive in normal
operation is shown in Figure 3.1.3.2-i.

3.1.3.2.1 Master Initialization Function

The Master Initialization Function is invoked immediately after the Master
Processor is loaded from Mass Memory. It is responsible for loading the
Remote and Monitor processors from Mass Memory and for performing initial
testing of all of the elements of the IDAMST federated system. If all
systems are operative, this Function initiates normal operations.

3.1.3.2.2 Master Time Control Function

The Master Time Control Function controls the two Timers in the Master
Processor. It uses Timer B to keep track of the passage of absolute time.
Timer A is used to provide interrupts for synchronizing time-critical opera-

rtions, i.e., setting new Minor Cycles and transmitting Critically Timed
lessages (see Section 3.1.2.1.8.8).

3.1.3.2.3 Master Synchronous Control Function

The Master Synchronous Control Function controls the Master BCIU in all
operations which are performed repetitively rather than in response to
requests by the Application Software. At the beginning of each Minor Cycle,
it prepares the new Synchronous Instruction List (see 3.1.2.4.2.4) for that

Minor Cycle, and causes the BCIU to execute it. When the Synchronous
Instruction List is completely processed before the end of a Minor Cycle,
this Function may direct the BCIU to perform other activities, such as
polling for Asynchronous requests or requesting self-tests by the Remote
BCIU's.

3.1.3.2.4 Master Asynchronous Control Function

The Master Asynchronous Control Function is invoked in response to Asynchro-
nous Request Vectors received either from the BCIU or from the Local Executive
in the Master processor. It directs the BCIU to perform the appropriate
Asynchronous transmission.

3.1.3.2.5 Master Error Recovery Function

The Master Error Recovery Function is invoked upon detection of an error in
the operation of the Multiplex System. According to the type of error, it
attempts one of various re-try schemes. If all re-tries of the erroneous
operation are unsuccessful, it invokes the Reconfiguration Function.

3.1.3.2.6 Mass Memory Control

The Mass Memory Control Equipment Function is used as a source of proarams
durinq system initial4 ation, re-ir tializat;on and reconfiguration. It is
also used to record Oiurtal Intearated Test System data (DITS).

80

MASTER BCTU

L

jMASTER MASTER IMASTER
S Yq C 1ASYNC ERROR
CONTROL ;CONTROL iRECOVERY
•FJNCTION FUNCTION FUNCTION

* Lt

MASTER
TIME

EFUNCTION

R
S

LOCAV RECONFIGURAT ION
EXECUTIVE

Figure 3.1.3.2-' interreiation of the Master Executive
Functions in Normal Operation

V(

This page left blank intentionally.

82

3.2 DETAILED FUNCTION REQUIREMENTS

This section specifies the detailed functional requirements of each of the
functions and sub-functions of the IDAMST Executive.

3.2.1 Local Executive Functions

The Local Executive consists of four major functions:

a. The Hardware Interface Control Function
b. The Application Interface Function
c. The Local Executive Proptr
d. The Local Executive initialization and Recovery Function

The general purpose and interaction of these functions is described in Section
3.1.3.1.

3.2.1.1 Hardware interface Control Function

The Hardware interface Control Function is divided into sub-functions as follows:

a. The Interrupt Hanoling Function
D. Tne Asynchronous Reception Function
c. The Minor Cycle Reception Function
0. The Asynchronous Transmission Function

3.2.1.1.1 Interrupt Handling Function

The Interrupt Handling Function is always ano only entered upon the reception
of an Interrupt. Tne purpose of this routine is to:

a. Save the state of tne processor prior to the interrupt.
D. Identify the cause Of the interrupt.
c. Invoke the prope: Executive function to service the interrupt.
d. Return to a state of normal operation.

3.2.1.1.1.1 Inputs to Interrupt Handling

The inputs to this Function are:

a. The interrupt number
b. The Interrul Status Register (ZSR. of the BC.U
c. The processcr state prior to the interrupt, i.e., registers condition

status lCS,, I;.struction counter (IC), and Comsub Stack Pointer
(see 3..2.

d. The identity of tne last Task dispatched
e. The Priveged Mode Flag

83

TYPE OF INTERRUPT FUNCTION INVOKED

Processor-Generated:

Illegal op code
Boundary alignment Local Executive Error Recovery
Processor parity

Power down Dower down

Timer A Master Time Control
Timer B (Master Mode only)

BCIU-Generated (Master and Remote):

Async reception Async Reception

Async transmission Async Transmission

DMA error Local Exec. Error Recovery

BCIU-Generated (Remote only):

Master Function Minor Cycle Reception

System Interrupt Local Exec. Error Recovery

BCIU-Generated (Master only):

Invalid Instruction Master Reconfiguration

No Data
Incomplete Data Master Error Recovery
Invalid Data

Terminal Failure Master Reconfiguration

Status Word Error Master Error Recovery

Status Word Exception Master Asynchronous Control

Program Controlled Master Synchronous Control

Table 3.2.1.1.1.2-1 Functions Invoked by the Interrupt
Handling Function

84

3.2.i.1.1.2 Interrupt Handling Processing

The Interrupt Handling Function performs the following actions:

a. If the Privileged Mode Flag is on, it saves the prior state of the
processor in a local Save Area; otherwise, it saves the prior state
in the Task Table B entry of the Task which was interrupted.

b. It identifies the cause of the interrupt, reading the ISR of the
BCIU if necessary.

c. it invokes the appropriate Executive function to service the interrupt.
d. It enables interrupts.
e. 1f the Privileged Moae Flag is on, it returns to the state prior to

the interrupt; otherwise, it sets the Privileged Mode Flag and
Executive Control Function.

The Executive function invoked for each type of interrupt is snown in Table

3.2.1..k.3 Outputs from Interrupt Handling

The outputs from tris Function are:

a. The ienticy of the interrupt
a. Te Save Area in tre Task Table B entry of the interrupted Task

,see 3.1.2.4.1..).

3.2.].1.2 Asynchronous Recep ion Function

The purpose of tne Asyncrro:,cus Reception Function is to accept an incoming
Asynchronous message from, the tCiU, to erqueue tne message for processing by
the Local Executive Proper, and to prepare for a new reception.

In addition, this Function ivtercepts messages requesting re-transmission of -the
last transmitted message, and invokes tne Asynchronous Transmission Function to
service them.

This Function is a]ways ano only invoked by the Interrupt Handling Function upon
the occurrence of an interrupt indicating completion of an Asynchronous reception.

3.2.1.1.2.1 Tin .'- sy c ro ou -e e ti-

The sole input to tr, Function is the Reception Queue. This Queue consists of:

a. A fixe. -u:-.aer of 33 word bffers for receiving Asynchronous messages.
b. A pointer to tne f'irst buffer in the Queue.
c. A poin.er to tr.e last Duffer in the Queue.

d. The Request Pe.nrg Flag.
LTne ,eception Q.&e is . st n First Out queue. Buffers are filled by the

3C>i, and remove, r-, te eLe Dy tnte 7oca, Executive Control Function. The
'frsz tuffer I'o-.noe -L s 'Lo zhe .exr ite,, or, s way out of the Queue,
i.e., the ouffer icceeri e t ast ore fu:y processeo by the Local Executive
Proper.

85

Normally, the "last buffer" pointer points to the last buffer filled by an
Asynchronous reception from the BCIU. However, when the Asynchronous Reception
Function is invoked, the buffer succeeding the one pointed to by the "last
buffer" pointer has just been filled with an Asynchronous message.

If any of the buffers contains an Asynchronou3 messace which has not been
processed by the Executive Proper, the Request Pending Flag is on; otherwise
it is off.

The buffers are considered to be arranged cyclically. That is, the buffer
which is physically first is considered to succeed the buffer which is physically
last. A typical configuration ol thie Queue, a four-buffer system with two
messages in the Queue, is shown in Figu-e 3.2.1.1.2.1-1.

3.2.1.1.2.2 Asynchronous Reception 9rocessina

The processing of this Function is shown in Figure 3.2.1.1.2.2-1.

* Note that if all buffers are full, the Asynchronous Reception Function does not
* reinstate bus operations.

*3.2.1.1.2.3 Outputs from Asynchronous Reception

The outputs from this Function are:

a. The updated Reception Queue (see 3.2.1.1.2.1).
b. The Continue Bit in the BCIUL
c. Asynchronous Reception Pointers i the DvA Pointer Blocks

(See 3.1.2.4.1.1).

3.2.1.1.3 Minor Cycle Reception Function

The purpose of the Minor Cycle Reception Function is to accept and to enoueue
new Minor Cycle numbers received from the BCIU. This Function is always and
only invoked by the Interrupt Handling Function upon an interrupt indicated by
the reception of a Minor Cycle Mode Command. in Master Mode, this Function does
not operate, Minor Cycles being directly enqueued by the Master Executive.

3.2.1.1.3.1 Inputs to Minor Cycle Reception

The sole inpkt to this Function is the Minor Cycle Register in the BCIU.

3.2.1,1.3.2 Minor Cycle Reception Processing

The Minor Cycle Reception Function performs the following operations:

a. It reads the new Minor Cycle number from the BCIU.
b. It sets the Minor Cycle Pending F!ac on.

Note that this Function does not reinstate bus operations.

SF

I o

3LFFER 0 I
MESSAGE #1 4- "LAST BUFFER" POINTER

3UFFER]

AVAILABLE
• TO

BCIU

BUFFER 2

3 FR 3MESSAGE -C' "FIRST BUFFER" POINTER

REQUEST PENDING FLAG ON

-' 5.2.:oo2.i- Examrple cf eception Queue

__--7-

AS YNCHRONOUS
RECEPTION

INDIATESASYNCHRONOUS
"RE-TRANSMIT" TRNMISO

S"LAST BUFFER'

SE SYNCIRECEPTION
POINTERS FOR
N~EXT BUFFER

fSET RECEPTION
PENDING FLAG

ONI

Figure 3.2.1.1.2.2-1 Processing of Asynchronous Reception Function

3. ... utpucs from Mirnor Cycle Reception

The outputs from tnis Function are:

a. The new Minor Cycle number
0. The Minor Cycle Pending Flag

1.2.1.1.4 Asynchronous Transm ;ssion Function

re. z).r-iose o-, one Asycrns Tr ~:scn .r~r s to accept Oitgoing
Asjncrronc) messac7aS Crqje~ea by the Local Execut~ve Proper and to prepare
Lner for transissior, Dy tr~e BCIj.

s2 F1 or. can :)e i n voKO e ron o rree p~ia ce s

.e te nr:.-.ci: nc runction upcn com- fetion oy one 3 iU)f

/. LI e Asvr~cnroncu3Ls ipnnc ;c fl~ recepcicn c a Me S a Ce
e ,z r e- t; -a:i smT s sn cr a as ne s saqe t r ar. S m41t t e o, 0r

ly ZrC LGCa Execu-cve Proper to reoues: Initiation o-F an asynorronous

z*~U trar.52zs5;on.

.,.,1pLts to tn z)r c z,, on ar :

a. ~~~~l3 fO2V~5 0

The 7Transmi lO 7o aii c~ Asynchronous
t ,an sm is s io ns w n V~ L- F) e \C. 1 erut'nve ?rcper, but not
yet discarded bv D L. c ne ZAsynchronous
.rsrsmisslon jni th'~rr~~ e next transmission

nas reer co,-,Piet- y

,he Tra-nsm7,-,ssor. t

Las- re
Des.- L Las/ uoircs 3*) or

5escro -,3o- 7- -^e~~ ,- , -r onsm-s o

Kec re t, Prrr ss' cvze Oc

X,~p

Z)(

ADAB C1 OEING AEROSPACE CO SEATTLE WA BOEING MILITARY AIRPL--ETC FIG 9/2
COMPUTER PROGRAM DEVELOPMENT SPECIFICATION FOR IOAMST OPERATION-ETC(UI
Nov 76 F33615-76-C-1099

UNCLASSIFIED SPEC-SBO401 AFAL-TR-76-208-ADD- 1 L

2fllll IIIIIIf,

EELhhIhIIIEE-mEEElllllEEE
EHEHEL

When the Asynchronous Transmission Function is invoked upon completion of an
Asynchronous transmission by the BCIU, the CTP points to the Descriptor Block
of the message just transmitted.

When the Transmission Queue is empty, that is, there are no messages waiting
for transmission, the LTP and the FTP both point to the Iescriptor Block of
the last message transmitted, and the CTP points to the next Descriptor Block,
even though there is no message set up for BCIU transmission.

When the BCIU is set up for re-transmission of a message previously transmitted,

CTP=LTP.

Each Message Descriptor Block consists of:

a. A Request Vector
b. An Asynchronous ID word
c. A pointer into the Transmission Buffer Area.

The Request Vector is the Request Code for transmission of the message.I

The Asynchronous ID word is the word to be appended to the beginning of the
message to identify it to the receiving Local Executive. If this message is to
be sent to an RT, this word is octal 177777, and will not be appended to the
message.

The buffer pointer points to a buffer allocated within the Transmission Buffer
Area holding the data to be transmitted. The first two words of each buffer are
blank, to allow for the Minor Cycle Tag and the Async ID; the data begins on
the third word. If a message has no associated data, i.e., is an interprocessor
Service Request, the buffer pointer is zero and no buffer is allocated for the
message. It is possible for a series of messages to point to the same buffer,
as when a single compool block is sent to more than one processor.

The FUBP points to the first word of the Buffer Area that may not be used for
enqueuing new messages, i.e., that contain data that has either-not yet been
transmitted by the BCIU or may have to be retransmitted by the BCIU. The FFBP
points to the first word of the Buffer Area that may be used for enqueuing
messages by the Local Executive Proper. FFBP+33 may never be outside of the
Buffer Area, and FFBP+33 6 FUBP at all times, since any message may be up to
33 words, including the Tag Word.

A typical configuration of the Transmission Queue is shown in Figure 3.2.1.1.4.1-1.
This system has eight Message Descriptor Blocks, six of which describe messages
pending transmission. Note that message #3 and message #4 share the same data,
while message #2 has no data, and hence, no buffer.

3.2.1.1.4.2 Asynchronous Transmission Processing

The Asynchronous Transmission Function performs the following actions:

a. If invoked to perform a re-transmission, it sets CTP to previous
message in Queue.

90

MESSAGE DESCRIPTOR BLOCKS

REQUEST VECTOR #4
ASYNC ID #4

FTP BUFFER POINTER #4 TRANSMISSION BUFFER AREA

BUFFER #2
REQUEST VECTOR #5
ASYNC ID #5 BUFFER #3
BUFFER POINTER #5

AVAILABLE FOR
ENQUEING BY FFBP
LOCAL EXECUTIVE AVAILABLE FOR
PROPER ENQUEING BY

LOCAL EXECUTIVE
PROPER

ASYNC ID #0

CTP BUFFER POINTER #0

• BUFFER #0
{REQUEST VECTOR #1
---ASYNC TO #1 BUFE -1FB

CTP BUFFER POINTER #T

REQUES-T VE CT OR #2 1
ASYNC TO #2
NULL OE

SYNC 10 #3
BUFFER POINTER #3

Figure 3.2.1.I.4.1-1 Example of Transmission Queue

91

.. .. ,......._. ..,. . .-

4.6

b. If invoked upon completion of Asynchronous transmission, it sets CTP
to the next message in the Queue, discards the previous message in the
Queue and sets the FUBP forward if a buffer has been discarded.

c. If there is a message in the Queue waiting for transmission, it copies
the Asynchronous Transmission Pointers in the DMA Pointer Blocks to
that buffer, and sends the appropriate Request Vector either to the
BCIU or, in Master Mode, the the Master Asynchronous Control Function.
Messages with a null Buffer Pointer in their Descriptor Blocks are
transmitted from a local buffer.

d. If the BCIU is "busy", the Continue Bit in the BCIU is set.

The output of the processing is shown in Figure 3.2.1.1.4.2-1.

3.2.1.1.4.3 Outline of Asynchronous Transmissions

The outputs from this Function are:

a. The updated Transmission Queue (see 3.2.1.1.4.1).
, b. The Asynchronous Transmission Pointers in the DMA Pointer Blocks

(see 3.1.2.4.1.1).
c. The Continue Bit in the BCIU.
d. A Request Vector (to the Status Code Register in Remote Mode; to the

Master Asynchronous Control Function in Master Mode).

92

"k- . . . " ' ". ,

ASYNCHRONOUS

TRANSM4ISS ION
REQUEST

IF ASYNCHRONOUS THEA SUSPEND TASK

WRITE ASYNCHRONOUS

ID AND DATA INTO

ASYNCHRONOUS COMPOOL

PUT ASYNCHRONOUS ID'S
AND COMPOOL ADDRESS

INTO ASYNCHRO.NOUS

CONTROL BUFFER

IF ASYNCHRONOUS PERFORM EVENT

RANSMSSIONTASK DISPATCH

Figure 3.2.1.1.4.2-1 Asyn~chronous Transmission

93

r16 .l r
m

.a.I - .

3.2.1.2 Application Interface Function

The Application Interface Function serves to save the processing state of the
invoking task, to change to the privileged state of the IDAMST processor, and
to invoke the specific Local Executive Function that was requested by the Real-
Time Pseudo-Statement from the Applications Task. The Applicaticn Interface
Function also does not save the Task statein the case of three specific Executive
Service Requests (ESR's). For those three Intrinsic functions, the request is
satisfied and control returned to the requesting Task.

The three specific ESR's contained in the Application Interface Function are

EREAD, INVOKED, and TIME.

3.2.1.3.1 Executive Service Routines

There are fifteen Executive Service Routines, one for each type of Real Time
Pseudo-Statements, including the four separate types of Wait Statements (see
3.1.2.1.8).

3.3.1.2.1.1 Inputs to Executive Service Routines.

The inputs to the various Executive Service Routines are shown in Table
j" 3.2.1.2.1.1-1.

3.2.1.2.1.2 Executive Service Routine Processing

Each Executive Service Routine performs the following actions:

a. It sets the Privileged Mode Flag
b. It saves the state of the invoking Task in the Task Table B.
c. It calls the appropriate Function in the Local Executive Proper.

The Function invoked by each Executive Service Routine, and the parameters passed
to it, are shown in Table 3.2.1.2.1.2-1. The interfaces and some of the support-
ind data are shown in Table 3.2.1.2.1.2-2.

3.2.1.2.1.3 Outputs from Executive Service Routines

The output from each Executive Service Routine is the updated status of the
Application Software requested by the corresponding Pseudo-Statement. See
3.1.2.1.8 for details.

3.2.1.2.2 Application Interface - Intrinsic Functions

Application Interface contained Functions are short functions which can index
into the data structures used by the Local Executive Proper routines discussed
in 3.2.1.3.

94

b
•

.

ROUTINE INPUTS

Schedule Task Table A entry of Task to be
Schedu led

Cancel Task Table A entry of Task to be
Cancel led

Terminate Task Table A entry of Task to be
Terminated

Wait:

Absolute Time Absolute Time
Relative Time Relative Time
Latched Event Table entry of Event to be waited

on; desired value
Unlatched Event Table entry of Event to be waited

on; desired value

Signal Event Table entry of Event to be
signalled; desired value

Read DOB for Compool Block to be Read;
Local Copy to be read into

Write DOB for Compool Block to be Written;
Local Copy to be written from

Trigger DDB for Compool Block to be Trigqered;
Local Copy to be written from;
time to go

Rad Event number

Invoke Task ID

10 device Number of device to be manipulated; off
or on state desired, reconfiguration
flag.

Time Null

Table 3.2.1.2.1.1-1 Inputs to Executive Service Routines

9
1. ,

95

ROUTINE FUNCTION INVOKED PARAMETERS

Schedule Schedule 1) Task Table A entry

Cancel Cancel/Terminate 1) Task Table A entry
2) Canrcl/Terminate

Flag = Cancel

Terminate Cancel/Terminate 1) Task Table A entry
2) Cancel/Terminate

Flag = Terminate

Wait:Absolute Time 1Wait) Time/Event Flag = Time
Relative Time 2) Absolute time to go

Latched 1 Wait 1) Time/Event Flag = Event
* Unlatchedj 2) Event Table entry

3) Desired value of Event
* 4) Latched/Unlatched Flag

Signal Event Handling) Internal/External
Flag = Internal

2) Event Table entry
3) Desired value of Event

Read Compool Block Handling 1) Internal/External
WriteJ Flag = Internal

2) Trigger Flag = off
3) DDB
4) Local Copy

Trigger Compool Block Handlinq 1) Internal/External
Flag = Internal

2) Trigger Flag - on
3) DDB
4) Local Copy
5) Time to go

10 Device 10 Device 1) Device number
2) Flag = ON/OFF
3) Reconfiguration Flag

Eed Application Interface 1) ERead/Time/Invoked
Flag z ERed

2) Value of Event

Invoked Application Interface 1) ERead/Time/Invoked
Flag = Invoked

2) Task Table A entry
3) Value of Invoked

Time Application Interface 1) ERead/Time/Invoked
Flag = Time

2) Time value

Table 3.2.1.2.1.2-1 Functions Invoked by Executive

Service Routines

96

3.2.1.2.2.1 ERead

ERead interrogates and returns the value of a specific event. This function
properly belongs with the event handler function, but is separated from the
event handler because of efficiency requirements. The inputs are described in
Table 3.2.1.2.1.2-1.

3.2.1.2.2.2 Invoked

Invoked interrogates and returns the status of a specified task. This function
properly belongs as part of a task handling function such as Checker (3.2.1.3.4),
which determines the status of a task, but is separated because of efficiency
considerations. The inputs are described in Table 3.2.1.2.1.2-1.

3.2.1.2.2.3 Time

Time is a function that returns the elapsed time since system initialization.
There are no input parameters; the processing is a readout of the processor
clock register and appending that value to the cumulative value since system
initialization. The output of Time is the cumulative time since system
initialization.
3.2.1.2.3 Executive Service Return Function

The Executive Service Return Function is called by all Executive Service Routines
immediately before they relinquish control. The purpose of this Function is to
determine whether there is a need to perform additional Local Executive Functions,
either as a result of Asynchronous messages or Minor Cycles received while in
Privileged Mode or because the Service itself requested further Services. If
there are further services to perform, this Function generates a pseudo-interrupt;
otherwise, it resets the Privileged Mode Flag and returns to its caller.

3.2.1.2.3.1 Inputs to Executive Service Return

The inputs to this Function are:

a. The Reception Pending Bit (see 3.2.1.1.2.1)
b. The Minor Cycle Pending Bit (see 3.2.1.1.3.1)
c. The Event Queue (see 3.2.1.3.1.1)
d. The identity of the last Task dispatched

3.2.1.2.3.2 Executive Service Return Processing

The processing of the Executive Service Return Function is shown in Figure
3.2.1.2.3.2-1.

3.2.1.2.3.3 Outputs from Executive Service Return

Tie sole output of this Function is the Save Area of the last Task dispatched
(see 3.1.2.4.1.4).

97

i -

J

EXECUTIVE
SERVICE
RETURN

DISABLE I
INTERRUPTS

• ~IF EVENT, "

RECEPTION THEN ENABLE' ~ ~OR MINOR ,sop TERUT
CYCLE

ITRUT

PENDING I:-

RESET CALL LOCAL

PRIVILEGED EXECUTIVENODE FLAG CONTROL
FUNCTION

ENABLEI
INTERRUPTS

RU

FIGURE 3,2.3.2-1, EXECUTIVE SERVICE RETURN PROCESSING

98

3.2.1.3 Local Executive Proper

The Local Executive Proper consists of ten subfunctions:

a. Local Executive Control Function
b. Minor Cycle Setup Function
c. Event Handling Function
d. Task Checking Function
e. Task Scheduling Function
f. Task Termination/Cancellation Function
g. Wait Function
h. Compool Block Handling Function
i. Dispatch Function
j. 10 Device Function

3.2.1.3.1 Local Executive Control Function

The Local Executive Control Function maintans the proper sequencing of the
subfunctions of the Local Executive Proper. This Function is called either by
tne Application interface Function after a Real Time Pseudo-Statement has been
serviced, or by the Hardware Interface Function after an interrupt has been
serviced. The Local Executive will return control directly to the calling or
interrupted task if none of the following is true:

a. There is a Minor Cycle pending.
b. Th re is an Asynchronous Message Pending.
c. The Event Queue is non-zero.
d. The highest priority dispatchable task is higher priority than the

last dispatched task. Privileged tasks are considered to be highest
priority tasks.

When a Normal task makes an Executive Service Request or is interrupted, and
any of the conditions shown above are true, the Local Executive will service
the condition and then call the Dispatcher.

The Event Queue is sec by the subfunctions of the Local Executive Proper when
they wish to set an Event to a certain value. It is necessary to enqueue the
*ver" inro 'ts des- -, va. e rather than directly calling the Event Handling

-t~o tc "vC;J -... virn, The Event Queue is serviced on a Last In First Out
basis. Edcn item -. cr.e Q.,eue contains:

. oo-nter -3 tne Event Tazle entry of an Event, and
tne desirL3 valie of the Event.

LOCj. _xective Control Processing

- nqtri outline the processing of the Local Executive Control Function is

99

oI

LOCAL
EXECUTIVE

IF MNOR YCLECALL MINOR CYCLE

IF EVENT PENDING DEQUEUE EVENT

CALL EVENT

HANDLING

FUNCTION

CALL.'DISPATCH CALL PROPER

FUNCTION FUNCTION

DEQUEUE ITEM

FROM
RECEPTION QUEUE

Figure 3.2.1.3.1.2-1 Local Executive Control Processing

100

Note that an Event must be dequeued before it is processed, because the Event
Queue is Last In First Out, whereas an Asynchronous reception must be dequeued
after it is processed because the information in the buffer in the Reception Queue
may be used in the course of processing the reception.

After the Local Executive Control Function dequeues an Event from the Event
Queue, it passes the following parameters to the Event Handling Function:

a. Internal/External Flag = Internal
b. Pointer to Event Table entry for Event
c. Desired value of Event

-he Asynchronous ID which this Function uses to determine the type of each
Asynchronous message in the Reception Queue may be either a Transmit Word,

* indicating that the message was sent by an RT, or a "true" Asynchronous 1D
proauced by the Local Executive which sent the message. If it is a Transmit
Word, the Local Executive Control Function uses the TOAD and the SNAKE (see
3.1.2.4.7) to determine the DDB associated with the message, and calls the
Compooi Block Handling Function. Otherwise, it determines the type of message
;rom the OP Code field of the Async ID, and determines the parameters to pass
to the specified function by the Parameter field of the ID. The types of
Async Ti's, tne Functions invoked to service them, and the parameters passed
to those Functions are shown in Table 3.2.1.2.1.2-1.

3.2.1.3.1.3 Outputs from LGca; Executive Control

This Function has no outputs, since it is never exited.

3.2.i.3.2 Minor Cyc'e Setup Function

The Minor Cycle Setup Function performs the processing necessary to set up the
environment of a new Minor Cycle. This Fjnction is always and only invoked by
the Local Executive Controi Function upon detection of a pending Minor Cycle.

-<
131

3.2.1.3.2.1 Inputs to Minor Cycle Setup

The inputs to this Function are:

a. The new Minor Cycle Number
b. The SYNPTR and SYNPTR Index Table (see 3.1.2.4.2)
c. The Minor Cycle Event Generation Table (see 3.1.2.4.1.5)
d. The Chain of Tasks waiting on time (see 3.2.1.3.7.2)

3.2.1.3.2.2 Minor Cycle Setup Processing

The Minor Cycle Setup Function performs the following actions:

a. If new Minor Cycle Number is out of sequence, call -the Error Recovery
Function.

b. Set Minor Cycle Number to new value.
c. Set Base Address Register to appropriate DMA Pointer Block.
d. Set Continue Bit in BCIU.
e. Set up DMA Pointer Block for next Minor Cycle using the SYNPTR and

SYNPTR Index Table.
f. Enqueue the appropriate Minor Cycle Events, using the Minor Cycle

Event Generation Table.
g. Look at the first Task waiting on time. If it is to go on this

Minor Cycle, take it out of the Chain and make it Dispatchable.
h. Repeat Step g until there are no Tasks waiting on this Minor Cycle.

The outline of these functions is given in Figure 3.2.1.3.2.2-1.

3.2.1.3.2.3 Outputs from Minor Cycle Setup

The outputs from this Function are:

a. The Minor Cycle Number
b. The new DMA Pointer Blocks (see 3.1.2.4.1.1)
c. The Base Address Register in the BCIU

d. The Continue Bit in the BCIU
e. The Event Queue with the appropriate Minor Cycle Events enqueued.
f. The updated Task Table B entries of all Tasks which were waitinq

for this Minor Cycle.

3.2.1.3.3 Event Handling Function

The event handling function will be called for regular event signalling, block
update, or task completion events declared by tasks in the processor. This
Function may be invoked "internally" either by the Application Interface
Function or by the Local Executive Control Function, to service an Event Signal
request emanating from within the processor. Or it may be invoked "externally"
by the Local Executive Control Function to service an Event Signal request from
another processor.

3.2.1.3.3.1 Inputs to Event Handling

The inputs to this Function are:

102

.. . .R. .. "

MINOR CYCLE
YCHiRONIZATIO

READ MINOR CYCLE

NUMBER FROM BCIU

IF MNOR YCLESIGN4AL EVENT

NUMBER IS NOT TH FOR MINOR CYCLE

I EPETEDNLTB SYNCHRONIZATION
ERROR

ISET MINOR CYCLE SET UP DMA BLOCK
FOR GIVEN MINOR

TO NWNME MCYCLE NUMBER

BET BASE ADDRESS I
F POINTER TABLE

INTO BCIU BASE
DDRESS REGISTER
ET CONTINUE BIT

IN BCIU,

SET UP OMA

BLOCK FOR NEXT
MINOR CYCLE

ACTIVATE ALL
TASKS WAITING ONJ
GIVEN MINOR

CYCLE NUMBER

Figure 3.2.1.3.2.2-1 Minor Cycle Syn'chronization

103

a. The Internal/External Flag
b. The Event Table entry of an Event
c. The desired value of that Event

3.2.1.3.3.2 Event Handling Processing

The Event Handling Function sets the value of an Event in the Event Table,
formulates and enqueues Asynchronous messages to other processors to set their
copies of that Event, sets the Conditions in the Task Table E entries of Tasks
with the Event in their Condition Set, and invokes the Task Check Function to
check the status of those Tasks. The processing of the Event Handling Function
is shown in Figure 3.2.1.3.3.2-1.

3.2.1.3.3.3 Outputs from Event Handling

The outputs from this Function are:

a. The Transmission Queue, with requests to other processors to set
their copies of this Event.

b. The updated Event Table entry of the Event.
c. The updated Task Table B entry of each Task with this Event in its

condition set.
d. The updated Task Table B entry of all Tasks waiting on the current

value of the Event.

3.2.1.3.4 Task Checking Function

The purpose of the Task Checking Function is to check whether a Task should be
changed from Inactive to Active State, and if so, to change its State and
perform all associated actions.

This Function is invoked in the following circumstances:

a. When a Task is Scheduled.
b. When an Event in the Task's Condition Set is Signalled.
c. When a Task either ends or is forcibly Terminated.

3.2.1.3.4.1 inputs to Task Checking

The sole input to this Function is the Task Table B entry of the Task to be
checked.

3.2.1.3.4.2 Task Checking Processing

Task checker interrogates Task B table to determine whether the specific task
has been scheduled. If the task has been scheduled then the event set is
calculated to determine whether the conditions are met to dispatch the task.
If the conditions are met then the Task B table entry for Task status is
updated from "Scheduled" to "Dispatched" and any associated activation event
is queued on the event queue. Unlatched events are returned to their negated
state. The processinq of this Function is shown in Figure 3.2.1.3.4.2-1.

104

4'

EVE NT
HANDL ING

SET VALUE IN

EVENT TABLE

* EXTERNL L1~G*NO-OA TRANSMISSION TO

CALLASLCORNOL

EAL TAS

CHECKFFNCCTIO

IFAYTSSFOR ALL SUCH SET STATE TO

WAITIG ONDISPATCHABLE

RETURNCLEAR WAIT CHAIN

Figure 3.2.1.3.3.2-1. Event Handling Processing

105

TAS K
CHECKING

IF ALLCHANGE STATE TO
IF TASK IS

INVKEDBUTCONDITIONS ARE ACTIVE AND

INACTIVE SATISFIED DrsPATCHABLE

COMPLEMENT
UNfLATCH ED

CONDITIONS

Figure 3.2.1.3.4.2-1 Task Checking Procussing

106

3.2.1.3.4.3 Outputs from Task Checking

The outputs from this Function are:

a. The updated Task Table B entry.
b. The Event Queue, with a request to set the Activation Event, if any,

associated with the Task.

3.2.1.3.5 Task Scheduling Function

The Task Scheduling Function is invoked to Schedule a Task, either as the result
of the execution of a Schedule Statement within the processor or as the result
of a Schedule request received from another processor.

3.2.1.3.5.1 Inputs to Tdsk Scheduling

The sole input to this Function is the Task Table A entry of the Task to be
scneduled.

3.2.1.3.5.2 Task Scheouling Processing

The Scheduler uses Task Table A entry to determine if the task is resident in
its processor. if the task is resident then Task Table A entry points to the
appropriate Task Table B entry which can be set to "scheduled" ("invoked").
The unlatcned conditions are reset to the negative of the desired values for
dispatcning. If the TasK TablO A entry indicates that the task is in another
processor then an asjnchronous Schedule Request for that task must be built
anC suDmitteo for asyncnronous transmission. The processing of this Function
is shown in Figure 3.2...3.5.2--.

3.2.1.3.5.3 Output from Task Scheduling

The output from this Function is:

If the TasK resides in this processor, the updated Task Table B
entry; otherwise, the Transmission Queue, with a Schedule request
to the processor where the Task resides.

3.2.1.3.6 Task Termination/Cancellation Function

The purpose of the Task Terninaton/Cance'i"ltion Function is to Cancel or
Terminate forcibly a specfied Task and all of its descendants. if the
specified Task is the last dispatched Task, this Function will only affect the
Task's descendants, not tne Task itself. An additional function is to determine
the status of a specific task.

3.2.1.3.6.1 Inputs to Task Termination/Cancellation

The inputs to this Function are:

a. T re Tsk lable A entry of the Task.
b. The Iaentty of the last dispatched Task.
c. The CanceI/Terminate/Invoked Flag.

107

SCHEDUL ING

PROCESSOR UNLECKHNG D

It ICOUNCITIONST

R TIURSNNESRDAU N IS

ENQUEUE SCHEDULE

Figure 3.2.7,3.5.2-1 Task Scheduling Processing

108

3.2.1.3.6.2 Task Termination/Cancellation Processing

The Task Termination/Cancellation performs the following actions:

a. If the specified Task is not in this processor, it enqueues a Cancel
or Terminate request in the Transmission Queue and returns.

b. If the specified Task is not the last dispatched Task, it Cancels or
Terminates the specified Ta-sk.

c. It searches for all descendants of the specified Task whose controllers
are in the processor.

d. For each Task found in Step c, if the Task is resident, it Cancels
or Terminates it; if the Task is not resident, it enqueues a request
to Cancel or Terminate it in the Transmission Queue.

When a Task is Cancelled, its State is set to Uninvoked in Task Tables A and B.

* When a Task is Terminated, it is first set Inactive in Task Table B, and then
, the Task Checking Function is invoked to determine whether to re-Activate the

Task. If the Terminated Task has an Activation Event, this Function enqueues
* a request in the Event Queue to signal the Activation Event off.

In either case, if the Task to be Cancelled or Terminated is in Wait state, it
is removed from its Wait chain (see 3.2.1.3.7.2). If the request is to examine
the state of a specific task, then the Task Table B Task State entry is returned
as a value.

3.2.1.3.6.3 Outputs from Task Termination/Cancellation

The outputs from this Function are:

a. The updated Task Table A and B entries of all Tasks Cancelled or
Terminated.

b. The Transmission Queue, with messages to Cancel or Terminate non-
local Tasks.

c. Value of tne Task State of Execution.

3.2.1.3.7 Wait Function

The Wait Function is used to put a Dispatchable Task into Wait State until a
specified time occurs or a specified Event reaches a specified value. See
3.1.2.1.8.4 for furtner details.

This Function is only invoked by the Application Interface Function.

109

°-

3.2.1.3.7.1 Inputs to Wait

The inputs to this function are:

a. Time/Event Flag

b. Latched/Unlatched Flag

c. Event table entry or time to go

d. Desired value of event

3.2.1.3.7.2 Wait Processing

The wait conditions are checked to determine whether they have been
satisfied and need not wait. Otherwise the Task is olaced on either the
time wait chain or an event wait chain and the task state in Task Table B
is set to wait.

A Wait Chain is a chain of Tasks all waiting for the same type of condition.
There is one Wait Chain for Tasks waiting on time, one Wait Chain for each
Event waited on, and one Wait Chain for each Event whose complement is
waited on.

All Tasks in the same Wait Chain are tied together by the forward and back
pointers in their Task Table B entries (see 3.1.2.4.1.14). The Wait Chain
on time is ordered by time; all other Wait Chains are ordered arbitrarily.
The first Task in a Chain waiting on an Event or the complement of an Event
is located by a pointer in the Event Table entry for the Event (see
3.1.2.4.1.3). The identity of the first Task waiting on time is maintained I
internal to the local Executive.

The processing of this Function is shown in Figure 3.2.1.3.7.2-1.

3.2.1.3.7.3 Outputs from Wait

The outputs from this function are:

a. The Wait Chain into which the Task is put.

b. The updated Task Table B entry of the Task.

3.2.1.3.8 Compool Block Handlinq Function

This function is responsible for all processing involving Compool Blocks,
including:

a. Servicing Read, Write and Trigger Pseudo-Statements.

b. Acceptinq Asynchronous Compool Block Updates from RT's
and other processors,

.O..0i

PLACE TASK IN
WAIT IF SPECIFIED TIME WAIT CHAIN;

TIME >CURRENT REMOVE FROM
TEDISPATCHED QUEUE

IF TIEIEVEN SET TASK STATE

FLAG TIMETO WAIT
4i

r

PLACE TASK IN
RETURN IF UNLATCHED OR EVENT WAIT

THEN CHAIN; REMOVE
EVENT DESIRED FROM DISPATCHED i
VALUE /QUEUE

SET TASK

TO WAIT

Figure 3.2.1.3.7.2-I Wait Processing

PhI

e17

c. Formulating and enqueuing Asynchronous Messages to update

non-local copies of Compool Blocks.

d. Enqueuing Compool Block Update Events to be signalled.

e. In Master Mode, invoking the Master Trigger Function to
enqueue Critically Timed Update Messages.

3.2.1.3.8.1 Inputs to Compool Block Handling

The inputs to this Function are:

a. Internal/External Flag

b. Trigger Flag

c. DDB of Compool Block to be processed

d. Compool Block to be processed

e. Local Copy to be processed

f. Time (for Trigger only)

3.2.1.3.8.2 Compool Block Handling Processing

Compool processing involves time dependent compool transmissions as well as
normal local-to-global and global-to-local copy transfers, which can involve
transfer of compools between processors. The different types of compools
are discussed in 3.1.2.1.3.

If the compool is critically timed, then the compool data descriptor block
must be updated with the desired transmission time. If the compool is not
in the Master Processor then a message must be sent to the master executive
requesting transmission at the appropriate time.

If the compool is not critically timed, then local copies must update the
global copy upon "write compool" requests and the global compools must
update local copies upon "read compool" requests. If compool has been
declared as a Global Copy, then there are no local copies in any tasks,
i.e., the tasks share the same copy and read and write requests are null
functions.

The processing of this function is shown in Figures 3.2.1.3.8.2-1,-2,-3,-4.

3.2.1.3.8.3 Outputs from Compool Block Handling

The outputs from this function are:

a. Compool Block

b. Local Copy of Compool Block

112

COMPOOL BLOCK
HANDFLING

i7F DB IS-IF RIGGR SI SET TRIGGER SIT
!"'MSTERC~iICALOFFAND IMEAND TIME TO GO

TOIG"1 GO> CURRENT IN DOB

* COPY DATA
INTO COMPOOL

BLOCK

DO SYINCCALL MASTER'
PROCESSINGTR

G E U! !

"SYNCHRONOUS*

LELS11 F ITERNL/ HEN DO INTERNAL
EXTERNAL FLAG >-t ASYNC

INTENAL PROCESSING

DO EXTERNAL
ASYNC

PROCESS ING

Figure 3.2.1.3.8.2-1 Compool Block Handling

SYNC
PROCESS ING

IF PHASE/PERIOD RESET CONTINUE
IN 00DB CURRENT 1BIT IN BCIU
PHASE/PERIOD

THN COPY COMPOOL

LOCAL COPY

GLOBALCOPY LOCAL

COMPOOL BLOCK

IF PHASE/PERIOD ESET CONTINUE BIT

Figure 3.2.1.3.8.2-2 Asynichronous Compool Block Handling

114

LOA :NTERNAL

A'ELSE

COPY LOCAL COPY

NON-LOCAL COPIES INTO TRANSMISSION

11 TRIGGERCOPY TIME TO GOI

IS 0 INTO TRANSMISSIOj
FLAG S ONBUFFER

i F :R AL ENQUEUE UPDATE
NON-LOCAL MESSAGE IN TX

ICOMPOOL 'BL 0C K INTO COMPOOL

1F JDATE EVET EVNQUEUE I

Figure 3.2.. 3 nternal Asynchrorous Compoo' Slock Handling

EXTERNAL
ASYNCHRONOUS

COPY BUFFER

INTO COMPOOL

BLOCK

IF UDATEENQUEUE IT IN

EVENT XISTSEVENT QUEUE

R N

Figure 3.2.1.3.8.2-4 External Asynchronous Compool Block Handling

116

c. Transmission Queue with enqueued Update messages for copies of Compool
Block in other processors.

d. Transmission Queue with enqueued request for Transmission of the
critically timed compool at the specified time.

e. Updated DDB (fo, master Critical Timing DDB's only)

3.2.1.3.9 Dispatch Function

The Dispatch Function is always and only called by the Local Executive Control
Function when the Reception Pending Bit and Minor Cycle Bit are off and the
Event Queue is empty. The Dispatch Function searches for the highest priority
Dispatchable Application Task and, if it finds one, transfers control of it.

3.2.1.3.9.1 Inputs to Dispatch

The inputs to this Function are:

a. Task Tazie
O. The Reception Pending Bit
c. The Minor Cycle Pending Bit
0. The Event Queue

3.2.1.3.9.2 Dispatch Function Processing

When the Local Executive performs any services it keeps track of the Highest
Priority task made Dispatchable since the last Dispatch. When the Dispatcher

Is called it commences scanning of the task table starting with the Highest
Priority Dispatchable task. If the last Dispatched task is still the Highest
Priority task, then control will be returned to the original task. Otherwise,
control will be given to a new task. The only time that the Dispatcher actually
searches the task table is when a task ends, and it was the Highest Priority
Dispatchable task, or when the Highest Priority Dispatchable task becomes non-
dispatchable during the recovery of a condition.

The Dispatch Function performs the following specific actions:

a. When a Privileged Mode Task makes an Executive Service Request, or is
interrupted, the Local Executive will always return control directly
to that task.

b. It searches Task Table B for the highest priority Dispatchable Task.

c. If none s found, it returns to the Local Executive Control Function.
d. It disables interrupts, and resets the Privileged Mode Flap.

e. If the TcsK s -,n SL,spenced State, it restores the registers, condition
status ar.d Com-si Stack Pointer from the Task's Save Area, enables
interrupts, anQ branches to the point where the Task was interrupted.

f. Otherwise, it initializes the Comsub Stack Pointer and calls the Task.

g. On return fro. zne Task, .t sets the Privileged Mode Flag.
h. It sets z:r TasK Inactive.

i. if the ,s.. rai an Activation Event, it enqueues a request in the
Event ':. to sirnl the Event off.

J. 7t cal'> trc -.as. i, ckinc Furction to determine whether the Task
should [- ve--:vt.

k. t ret",:'>: .o rie Locai Execative Control Function.

117

" K - ' - . .

3.2.1.3.9.3 Outputs from Dispatch Function

The outputs from this Function are:

a. Indication of the last Task Dispatched.
b. The Task Table B entry of a Task after it returns to this Function.
c. The Event Queue with a request enqueued to signal the Activation

Event of the above Task, if any, off.

3.2.1.3.10 10 Device Function

The IO Device Function provides an interface with the Master Executive. Devices
may need to be turned off or be turned on during a particular mission phase.
Equipment failures may also require that a malfunctioning unit be shutdown.

3.2.1.3.10.1 Inputs to TO Device Function

The inputs to this function include:

a. Device Number
b. On-Off Flag
c. Reconfiguration Flag

3.2.1.3.10.2 1O Device Processing

The processing consists of the formulation of a message to the Master Executive
with the same contents as the inputs. If the application task is in the master
processor then a call to the Command List Handler.

3.2.1.3.10.3 Outputs from 10 Device

The output is the message formulated in the processing.

3.2.1.4 Initialization and Recovery Function

The Initialization and Recovery Function is divided into the following subfunctions:

a. The Initialization and Re-Initialization Function
b. The Local Executive Error Recovery Function

c. The Power Down Function

3.2.1.4.1 Initialization and Re-Initialization Function

The Initialization and Re-Initialization Function is automatically invoked by
the hardware upon system initialization or recovery from a power failure. It
is responsible for initializing of re-initializing the state of the Local
Executive.

3.2.1.4.1.1 Inputs to Initialization and Re-Initialization

The inputs to this Function are:

a. The Power Down Flag
b. The prior state of the system

The Power Down Flag, if on, indicates that a successful Power Down has been
accomplished.

118

.. ... i -- l

3.2.1.4.1.2 Initialization and Re-Initialization Processing

The Initialization and Re-Initialization Function performs the following
steps:

a. If the Power Down Flag is on, it restores the state prior to the
power failure.

b. Otherwise, it examines the state of the system and determines what
to initialize or re-initialize.

The BCIU initialization sequence and interaction with the processor are
described below. At the time that power is applied (cold start or transient
recovery), the Bus Control Module shall clear the Processor Control Resister
(PCR) and its Internal Status Register (ISR) and perform any other initial-
ization required. The BCM shall then perform its power-on self-test and
set the READY BIT within the PCR to logic 1 and present the Power-On
;nitialization Interrupt (Level 1 with ISR zero) to the Processor. The FAIL
Bit within the PCR shall be set according to the self-test results. A logic
I shall indicate that the self-test failed. In either case, the BCM shall
Degin to monitor the GO Bit within the PCR. When the BCM detects that the
GO Bit has been set to logic 1 by the Processor, the BCM shall assume that
tne Processor has loaded the BCIU Address into the PCR Bits 7-11. This
adoress shall oe saved in a non-PlO accessible register and shall be the
BCIU's Address.

Tre 5C.I shall then enter the Quiescent Mode. This shall be the normal entry
point froi, either Master or Remote Mode. When the BCM detects that the GO Bit
of ne PCR has been set to 1 by the Processor, the BCM shall set the Run Bit
of the PCR to 1 ane examine the Master bit of the PCR. If the Master bit of
the PCR is 1, the 3CM shall proceed to operate in the Master Mode. If the
Master bit is 0, the BCM shali proceed to ooerate in the Remote Mode. If,
during the course of operating in either mode, the BCM discovers the GO bit
of PCR has been set to 0 by the Processor, the BCM shall complete the bus
operation that it Is presently performing (if any) and return to the Quiescent
Mode entry point.

After initialization or re-initialization, the following should be true:

a. The BCIU should nave the proper Terminal Address, and should be
running.

o. The Reception, Event, Minor Cycle and Transmission Queues should
all be empty.

c. DMA Point.er ocK 3 snouic be set up for Minor Cycle 0.

d. The Minor Cyc'e Number

e. The var-o) areas o- core snould be Write Protected properly.

f. All gq.." mr ' -ecer, s c os :ti nu-.uer of processors, should be
initia : . e,..

After the system is fully initialized, this Function transfers control to

the Local Executive Control Function.

3.2.1.4.1.3 Outputs from Initialization and Re-Initialization

The outputs from this Function are:

a. Global Executive parameters

b. The state of the BCIU

3.2.1.4.2 Local Executive Error Recovery Function

This Function is invoked upon detection by the hardware or the Local Executive
of an unrecoverable error within the processor or BCIU.

3.2.1.4.2.1 Inputs to Local Executive Error Recovery

The sole input to this Function is indication of the condition causinq the
o failure. These conditions shall include at least:

*a. Illegal operation code

b. Boundary alignment error

c. Processor parity error

d. Processor memory protect

e. DMA parity error

3.2.1.4.2.2 Local Executive Error Recovery Processing

The Local Executive goes into the halt state after setting the status register
in the BCIU.

3.2.1.4.2.2 Outputs from Local Executive Error Recovery

The sole output from this function is a status code to the BCIU indicating
processor failure.

3.2.1.4.3 Power Down Function

This Function is invoked upon detection of a power failure. It attempts to
save the state of the processor prior to.total failure.

3.2.1.4.3.1 Inputs to Power Down

The input to this Function is the state of the processor at the time of the
power down interrupt.

120

3.2.1.4.3.2 Power Down Processing

This Function attempts to save the registers at the time of the power down
interrupt. If it is successful, it then sets the Power Down Flag.

3.2.1.4.3.3 Outputs from Power Down

The outputs from this Function are:

a. The state of the processor at the time of failure

b. The Power Down Flag

12

I.

k121

3.2.2 Master Executive Functions

The Master Executive includes the following major functions:

a. Master Initialization Function

b. Master Time Control Function

c. Master Synchronous Control Function

d. Master Asynchronous Control Function

e. Master Error Recovery Function

f. Mass Memory Control Function

3.2.2.1 Master Initialization

The Master Initialization Function provides for initialization of the IDAMST
System. It loads the Remote and Monitor Processor from Mass Memory and per-

* forms initial testing of the system.

3.2.2.1.1 Inputs to Master Initialization

The Inputs to Master Initialization are:

a. The Initial Program Load performed by the hardware bootstrap procedure.
This contains all the executive tables created as part of compiling
and loading the system.

b. The number of the processor containing the Master Executive. This is

supplied by a hardware discrete which can be attached to the processor.

c. The Mass Memory containing the object modules for this mission.

3.2.2.1.2 Master Initialization Processing

3.2.2.1.2.1 Initial Step

The Master Processor is determined by a discrete which indicates no time delay
before attempting to load. The remaining processors will have different lengths
of time to vait before attempting to load as the master processor.

After the Master Processor is loaded and has started execution, the Master
Processor:

a. Determines its Processor Number. This number indicates the number
of processors that failed to load and can be eliminated from the load
sequence.

b. Sets its BCIU to Master Mode and sets its BCIU number.

c. Attempts to communicate with the next processor or the Master Pro-
cessor may be unable to communicate with any other processor, in
which case the Master Processor will load the Monitor Processor Sys-
tem into the same processor in which the Master resides.

122

The Master may be able to communicate with at least one other processor,
in which case this processor is designated as Monitor. The Monitor System
is loaded into this processor.

If the Master is able to communicate with the other two processors, each
processor is loaded with its appropriate software (Local Executive and
applications routines).

As part of the communication, the Master Executive indicates to the other
processors that they should not try to load on the Master Executive.

3.2.2.1.2.2 Normal Start-Up

Normal Start-Up commences if all three processors are participating in the
system.

*° Tne Master sends the Monitor a System Interrupt Command. This causes the
Monitor to be initialized. The Master then sends the first Minor Cycle Event
(Master Function Mode Command) to each processor. This awakens each Local
Executive and causes the Local Executive to perform initialization and prepare
for receiving/transmitting data for the first minor cycle. When the Local
Executive has completed this function, it invokes the Master Executive to
schedule the Master Sequencer which starts all the Application Tasks.

3.2.2.1.2.3 Abnormal Start-Up With Less Than 3 Processors

The Master Processor is loaded for the three processor configuration. After
loading, the Master is able to determine the available complement of processing
elements. If the full complement is not available, then the Master must search
the Mass Memory to find the appropriate confiquration to load. The Master pro-
cessor is then reloaded with the proper Master Processor memory. The Normal
Startup procedure for loading and starting the remaining processor (if there is
one) is followed.

3.2.2.1.3 Outputs of Master Initialization

The outputs of Master Initialization are:

a. The Master Processor containing the Master Executive, a Local Execu-
tive, ano some applications software.

b. The Monitor Processor loaded with the Monitor, a Local Executive, some
Applications Software, and the applications modules needed for a limited
mission.

c. The Remote Processor loaded with Local Executive and the applications
software for the mission.

V2

123.

d. The scheduling of the Master Sequencer.

3.2.2.2 Master Time Control Function

The Master Time Control Function consists of three subfunctions:

a. Timer B Control Function

b. Timer A Control Function

c. Master Trigger Function

3.2.2.2.1 Timer B Control Function

This function is involked upon an interrupt by Timer B (see 3.1.1.2.4). This
indicates that Timer B has reached the value of zero. Since Timer B is a 16-
bit count, incremented every 100 microseconds, and is never set after system
initialization, this Function is invoked every 6.5536 seconds.

The sole purpose of this Function is to keep track of the passage of absolute
time. At any point, absolute time is defined as one hundred microseconds

times the value of Timer B plus the time since the last timer B interrupt.

3.2.2.2.1.1 Inputs to Timer B Control

The inputs to this Function are:

a. The Timer B interrupt

b. The time of the last Timer B interrupt

c. Current Timer B value

3.2.2.2.1.2 Timer B Control Processing

The Timer B Control Function adds 6.5536 seconds to "time of last Timer B
interrupt." If invoked by a request for elapsed time, the value of the
timer is added to the cumulative value.

3.2.2.2.1.3 Outputs from Timer B Control

The sole output from this Function is the updated time of the last Timer B
interrupt.

3.2.2.2.2 Timer A Control Function

The Timer A Control Function is invoked upon an interrupt by Timer A. This
indicates the expiration of an interval of time determined by the previous
invocation of the Timer A Control Function. This interval will have been set
to expire upon either or both of the following conditions:

a. Time for a new Minor Cycle

b. Time to send a Critically Timed message

124 +

3.2.2.2.2.1 Inputs to Timer A Control

The inputs to this Function are:

a. The Timer A interrupt

b. Absolute time (see 3.2.2.2.1)

c. The Critically Timed Message Queue (see 3.2.2.2.3.1)

d. The status of Synchronous operations (see 3.2.2.3.3)

e. The previous theoretical Minor Cycle number

N-ote that this Function maintains only the theoretical Minor Cycle number.
The actual Minor Cycle number is set by the Master Synchronous Control Function,
and may T-q behind the theoretical Minor Cycle number due to an exceptionally
heavy Bus loading.

3.2.2.2.2.2 Timer A Control Processing

The Timer A Control Function performs the following actions:

a. it cnecks the Critically Timed Message Queue to see if there are
any Critically Timed "essages ready to transmit.

D. ': so, t sends them.

c. :t crecKs to see whether any Critically Timed Messages should be
sent Defcre tne next Minor Cycle. 'f so, it sets Timer A to expire
at the time to send the next Critically Timed Message; if not, it
sets Timer A to expire at the time for the next Minor Cycle.

d. It invokes Syncnronous Control of time for a minor cycle has expired.

3.2.2.2.2.3 Outputs from T;mer A Control

The outputs from this Fnction are:

a. The updateG Critically Timed Message Queue

b. Any Cri t _.: j :d j:essces set L, go at tnis time

c. The new ii.,e for-Tier A

3.2.2.2.3 Maz:cr Tr.qqer Fnction

Tne Master Trigger K nc-,cr . -r-tica,ly Timed Messages detected by
the Comoo Bloc - . ,hinr K ction see 3.2.1.3.3). it encueues them in the
Critically Timed Message Queue for processing by the Timer A Control Function.

I=

3.2.2.2.3.1 Inputs to Master Trigger

The inputs to this Function are:

a. The Critically Timed Message

b. Time to send the Critically Timed Message

c. The Critically Timed Message Oueue

The Critically Timed Message Queue contains all Critically Timed Messages
which have been Triggered but not yet sent to the aoDronriate RT. The Queue
is arranged in order of the time at which the messages are to be sent. The
items in the Queue are Master Critical Timina DDBs (see 3.1.2.4.1.7). They
are linked together by item 96, "Forward Pointer to DOB." The identity of
the first DDB in the Queue is maintained local to the Master Executive.

3.2.2.2.3.2 Master Trigger Processing

The Master Trigger Function inserts the new Critically Timed message into the
proper place in the Critically Timed Message Queue.

3.2.2.2.3.3 Outputs from Master Trigger

The sole output from this Function is the updated Critically Timed Message
Queue.

3.2.2.3 Master Synchronous Control Function

The Master Synchronous Control Function controls the Synchronous operations of
the Master BCIU. It may be invoked either by the Timer A Control Function at
the time for a new Minor Cycle, or by a Program controlled Interrupt generated
by the BCIU when it has finished processing the Synchronous Command List.

3.2.2.3.1 Inputs to Master Synchronous Control

The inputs to this Function are:

a. The actual Minor Cycle number

b. The theoretical Minor Cycle number

c. The prior state of Synchronous operations

d. Current state of Synchronous operations

3.2.2.3.2 Master Synchronous Control Processing

The Master Synchronous Control Function performs the following actions: I
a. If invoked by the Timer A Control Function and all synchronous

operations are complete, then increment the theoretical Minor Cycle
and go to step 'e.'

126

_ _ _h_

r
E. iinvokeC by the Timer A Control Function and all synchronous

operatiors are not complete, then increment the theoretical Minor
Cycle Number and return.

c. If invoked because of the BCIU interrupt which indicates the end of
synchronous processing and the theoretical Minor Cycle = actual
Minor Cycle, then begin processing asynchronous transmission list, if
non-empty.

o. If invoked because of the BCIU interrupt which indicates the end of
synchronous processing and the theoretical Minor Cycle is greater
;nan the actual Minor Cycle, then go to step 'e.'

e. It increments the actual Minor Cycle number by one, and sets the
Minor Cyce Pending Bit in the Master processor (see 3.2.1.1.3).

it links zcgetner t.e oroper blocks of Instructions in the Synchron-
ous CommarC List for the new Minor Cycle via the Command List
narder (see 3.2.2.4).

t sends "aster F,nctior Moce Commands to the Remote processors to
infomr tnem of the new Minor Cycle.

n. :z sets the Master BCIU to the becinning of the Synchronous
Irstruction List via the BCiU Interface Function (see 3.2.2.5).

3.2.2.3.3 5,3tuts from Master Syncnronous Control

nre outputs from this Function are:

1. The new ,inc-r Cycle numoer

b. The theoret'ca ',inor Cycle

c, The current state of Syncrronous operations

3.2.2.4 Co:rJ i 'nt ,roer , 0nction

[ie Command List ,;- er i. respons e for the control and modification of
the commano list tnzz controls the BCIU. Those functions include turning on/
off communication -o nc from devices, setti% the corrands to match the minor
cycle number, and ;sort syrcr,rcrous messac.s into tr-e command list.

3.2.2.4.1 Co. .nc -ist -andler Input _

Inputs to the Conrrano ist r ardler inciuoe:

a. Device rui;oer

o. wnether l: : . r,:jn i cau t i o i t" the device should be turned on or off

c. wnether : n.c r, norc t so.lc be modified because of reconfigura-
tion

127

d. minor cycle number

e. asynchronous message DDB

f. append/insert/In-Out/Link List Flag

3.2.2.4.2 Processing

Four processing subfuncticns are identified as part of the major functions:
In/Out, Link List, :nsert Mesaye, and Append Message of communication with a
device is to be altered, ther the Com,'iand List Handier in the form of sub-
function In/Out must determie the location of the device in all of the command
lists.

A device operation needing alteration may orly require one change in the command
list or, in the case of the bus, every command may require alteration to indicate
a change in bus operation. Reconfiguration to a one processor system requires
that the master processor command list be shortened to the minimal communication

* list.

If the command list must be changed because of the beginning of a new minor
cycle, then the BCIU pointer to the appropriate command list must be altered.
Command Handler in the form of Link List must match the minor cycle number to
the appropriate command list, and then present the request to change the BCIU
pointer to the BCIU interface.

If an asynchronous message must be sent the message can either be inserted into
the message list for immediate transmission or the message can be postponed
until the end of the synchronous transmissions. The Command Handler in the
form of Insert message and Append Message is responsible for the manipulation
of these lists.

3.2.2.4.3 Command List Outputs

The output will be an updated command list.

3.2.2.5 BCIU Interface Function

The BCIU Interface module is responsible for setting and reading the BCIU
registers via the programmed I/0 operations. These functions serve as the
interface between the hardware unit and the Master Executive Software.

3.2.2.5.1 BCIU Interface Inputs

Inputs to this module will consist of requests to read a particular BCIU
register or to write a register, along with the value to be written into the
register (see 3.1.1.1.3.2). An additional input is the interrupt level for a
BCIU generated interrupt.

3.2.2.5.2 BCIU Interface Processing

The BCIU Interface will generate the PIO operation to any specific register
accessible by the processor. If an interrupt level is presented to the BCIU
Interface, then the Interface module will interrogate the specific BCIU
registers to determine the precise meaning of the interrupt and call the

128

V°

appropriate service module (e.g., Error Recovery).

3.2.2.5.3 BCIU Interface Outputs

Outputs of BCIU Interface will be the values of the BCIU registers that are
requested to be changed or to be read.

3.2.2.6 Master Asynchronous Control Function

The Yaster Asynchronous Control Function responds to Asyncnronous Request
Vectors received either from other processors over the Data Bus or from the
Local Executive within the Master Processor.

3.2.2.6.1 Inputs to Master Asynchronous Control

.ne inputs to tnis Function are:

a. Tne Request Vector

Tre Master Request Decode Taole (see 3.1.2.4.2.,)

c. The status of Synchronous operations

3.2. .6.2 Master Asynchronous Control Drocessli,,

Tre " ster Asvichronous Conro, Fu.W,czion Cete,7r.,<,s which Ctrnt to senC to
the Master BCIU ~y 7esi, , -eqaest ',eccior :- .,.eA iro tnu Mt, r Request
Decode Table. The Master Requesi eCCe a:-e w- in'cate ,netrer tne message
will be sent out 3mmeciate)y x beeuec for :rnsm Ission following the
completion of the Syncnroaous Corr List. :.f s're lb is proc-,ssinq
Syncnronous Comaros ard tne request is for i.,-,ediate trarsmission, this Function

',~s the Asyncnrorus -r~szr,4on into tne Synchronous Instruction List; if the
3CL> has completea t1e Syncnronous List, it simply sends the Instruction to the
BC1U.

:f tne request ftr transminssio;r cores from an RT, this Function wili perform
tne same actions as jescriteo atove, except tat -t will se the Master Remote
Terminai Reques' TaD-.es s2e 3.1.2.4.2.3) r1-tnEr than the Master Request Decooe
T7ale to identify tre reuest.

3.2.2.6.3 Yl:. Master Asy;crorcs Contru

The outputs from, .rs .-nstio, are r, s tc tne ste: K> v-, tne Command
List Handler.

129

This page left blank intentionally.

130

3.3 ADAPTATION

This section summarizes the IDAMST Executive requirements with respect to the
operating facility, system parameters, and the internal capacities of the
system itself.

3.3.1 General Environment

The IDAMST Executive must be able to run in two environments:

a. DEC-10 Mode (SLS)
b. IDAMST Processor Mode (ICS, STS and ITB)

In IDAMST Processor Mode, the Executi - will execute native code, and communi-
sate with real or simulated Remote Terminals over a real or simulated Data Bus.

in DEC-l0 Mode, on the other hand, the Executive will execute PDP-1O code, and
the operations of tnu Data Bus, RTs, Timers and interrupts will have to be
replaced by logically parallel simulated constructs compatible with the con-
ventions of the DEC-10.

3.3.2 System Parameters

Tiere are two constant referenced by the IDAMST Executive which may change
according to operation needs:

a. The number of processors

b. The rates of the Minor Cycle and Major Frame

The number of processors in the IDAMST federated system may vary from one to
sixteen. The IDAMST System must include enough processors to supply the com-
puting power necessary to support the desired application. On the other hand,
the overhead associated with intertask communication tends to increase as
Tasks are partitioned into more processors.

The Minor Cycle rate and number of Minor Cycles per Major Frame may be changed
to suit the requirements of the peripheral equipment and the computational
algorithms. Currently, it is anticipated that there will be one Major Frame
per second and 64 Minor Cycles per Major Frame.

3.3.3 System Capacities

Since all Application S3ftware entities are controlled from table entries pre-
allocated by PALEFA2, tne capacity of the iDAMST Executive is essentially
limited only by avai am-,e eiory. The sole exception to this is tie three
queues used by vt-, -oca; Executive: The Transmission Queue, the Reception
Qaeue, anO the l ej: ede ard the one queue of the Master Executive: the
Postponed Async!,rooas Transmission Queue. When any of these queues becomes full

the system degraces. Therefore, it is necessary that these queues be allocated
lon5 enough to tr ne zne maximum expected loading.

i31

I *

4.0 QUALITY ASSURANCE PROVISIONS

This section identifies the basic method for accomolishing software verifica-

tion.

4.1 Introduction

IDAMST CPCIs will incorporate top-down, structured concepts, described brief-
ly below:

Structured Program

A structured program is a computer program constructed of a basic set of con-
trol logic figures which provide at least the following: Sequence of two or
more operations, conditional branch to one of two operations and return
repetition of an operation. A structured proaram has only one entry and one
exit point. A path will exist from the entry to each node anrd from each node
to the exit. In addition, certain practices are associated, su,.h as indenta-
tion of source code to represent logic levels, use of intelligent data names
and descriptive commentary.

Top-Down Programmi ng

Top-down programming is tne concept of performing in hierarchical sequence a
detailed design, code, integration and test as concurrent operations.

Top-Down Structured Programs

A top-down stri:tured program is a structurci prcgrz with the additional
characteristics of the slurce code being logically but not physically seg-
mented in a hierarchical manner and only dependent on code already written.
Control of execution between segments is restricted to transfers between
vertically adjacent hierarchical segments.

Top-down coding and verification is an ordering of system development which
allows for continual integration of the system parts as they are developed
and provides for interfaces prior to the parts being developed. At each
stage, the code already tested drives the new code, and only external data
is required.

In top-down programming, the system is organized into a tree structure of
segments. The top segments contain the hiqhest level of control logic and
decisions within the program, and either passes control to the next level
segments or identifies the next level segments for in-linz inclusions. The
next level may include stubs. Stubs which are to be replaced eventually with
running code may contain a "no operation" instruction or possibly a display
statement to the effect that control has been received. The process at
replacement of successively lower level stubs with operational code continues
until all functions within a system are coded and verified.

In top-down coding and verification, the highest level element is coded first.
Coding, checkout, and integration proceed down the hierarchy until the lowest
levels have been integrated. This does not imply that all elements at a
given level are developed in parallel. Some branches will intentionally be

132

developed early, e.g., to permit early training and early development of
critical functions or hardware/software integration.

Many systems interfaces occur through the data base defintion in addition to
calling sequence parameters. Top-down programming requires that sufficient
data definition statements be coded and that data records be generated beforeexercising any segment which references them. Ideally, this leads to a sinleset of definitions serving all the programs in a given application.

This approach provides the ability to evolve the product in a manner that
maintains the characteristic of always being operable, extremely modular and
always available for successive levels of testing that accompany the corres-
ponding levels of implementation. Exception to the top-down coding and integ-
ration approach will be considered on a case-by-case basis.

Each computer program will be coded in a higher order language. Use of
assembly or machine lanquage will be restricted to coding of certain executive
functions where the higher order language cannot be used.

Real Time Structured Proqrams

An additional complexity in the IDAMST system is the Real Time, asynchronous
communication of structured programs as tasks. Tasks are also organized as a
hierarchy. Each task has a Controller Task which is the only task permitted
to schedule or cancel the lower level task. However, any task is permitted
to activate any other task in IDAMST.

4.2 Computer Program Verification

Computer program verification is the process of determining whether the
results of executing a computer program in a test environment agree with the
specification requirements. Verification is usually only concerned with the
logical correctness of the computer program (i.e., satisfying the functional/
performance requirements) and may be a manual or a computer-based process
(i.e., testing software by executing it on a computer).

The use of top-down structured programming techniques provide certain prograr,
characteristics that ,-av lead to a simplification of the computer program
verification process. Top-down integration of the program elements in a CPCi
minimizes the use of complex driver routines and replaces them with actual
program elements and simple program stubs. It also provides a system in
which the computer program is continually being tested as successively lower
levels of program elements are integrated and the interfaces between proqram
elements are verifiea prior to the integration of the next lower level.

4.2.11 Program Element Tests

Program elements are coded in the sequence required for top-down integration.
When codinq and co.ie review are completed, each program element shall be
functionally tested in a stand-alone confiquration by the Proaraminer to
assure that the e" rt carn be executed and that the specified functions are
performet. Sircc t-oqrarn elements are small ana are restricted to one entry
point and one exit p int, the test environment is relatively simple.

133

4.2.2 CPCI Integration Tests

Following successful completion of the Program Element Tests, the program
elements are entered into the Computer Program Library where they are subjected
to configuration control procedures. Controlled program elements are compiled/
assembled, link-edited and the current CPCI version is made available for
integration testing. Integration tests are dynamic tests designed to verify
program functions and interfaces between program elements and with the data
base. The result is a complete CPCI for which all design features have been
verified.

The integration of program elements or tasks into the complete computer pro-
gram shall be accomplished in a top-down sequence. The hiqhest level elements
which contain the highest level controller tasks shall be tested and inteqrated
first. These tasks are the Master Sequencer, Configurator, Request Processor,
and Subsystem Status Monitor. Testin9 and inteqration shall proceed down the
hierarchy until all proqram elements (e.a., equipment interface functions),
have been integrated and the design completely verified.

An important aspect of integration testing of IDAMST will be the invocation
and synchronization of the tasks, since these functions do not fall under the

* structured programming rules.

4.2.3 Formal Software Testing

The purpose of formal testing is to confirm that the computer program performs
the functions and satisfies the performance requirement contained in the soft-
ware requirements specification. Formal testing consists of Preliminary
Qualification Te t. (PnT) and Formal Qualificti . Tcsts (FWT), and are ccr
ducted in accordance with Air Force approved test plans.

Pre-Qualification Testing (PQT)

PQT is an incremental process which provides visibility and control of the
CPC2 development during the time period between the Critical Design Review
and Formal Qualification Testing.

PQT consists of functional level tests, conducted at the development facility,
and using Air Force approved test plans. These tests will use documented pro-
cedures, completed by the contractor, and submitted to the Air Force Sufficient-
ly in advance of the scheduled test session to permit review and analysis.
They will typically use controlled inputs specifically prepared for the test
purpose.

A Pre-Qualification test will generally be conducted for each CPCI function.
If a test's cost or time consumption estimates are significantly high, the
test will be deferred to FQT unless it is time-critical or performance-criticalto the development of the CICl.

134

-*.* .

